APPENDIX G

 HydrogeologyTABLE 1 - MONTHLY WATER BALANCE

Monthly Water Balance Analysis
 Upper Little River EA

Land Description Factors	Sub-Area 1	Sub-Area 2	Sub-Area 3	Sub-Area 4	Sub-Area 5	Sub-Area 6	Sub-Area 7
Topography	0.21	0.26	0.22	0.26	0.20	0.30	0.28
Soils	0.1	0.15	0.1	0.15	0.2	0.1	0.15
Cover	0.05	0.05	0.1	0.1	0.1	0.1	0.2
Sum (Infiltration Factor)	0.36	0.46	0.42	0.51	0.50	0.60	0.23
Soil Moisture Capacity (mm)	75	100	150	200	200	350	400
Area (ha)	560.9	704.4	2351.1	681.5	44.2	80.1	37.3
Percentage of Total Site Area	12.6%	15.8%	52.7%	15.3%	1.0%	1.8%	0.8%
Total Site Area (ha)	4459.5						

Sub-Area 1 Urban Lawn, Clay, Flat to Rolling
Sub-Area 1 Urban Lawn, Clay, Flat to Rolling 2 Uoll
Sub-Area 2 Urban Lawn, Clay Loam, Flat to Rolling
Sub-Area 3 Moderately Rooted Crops, Clay, Flat to Rolling
Sub-Area 4 Moderately Rooted Crops, Clay Loam, Flat to Rolling Sub-Area 5 Moderately Rooted Crops, Loam, Rolling
Sub-Area 6 Mature Forest, Clay, Flat to Rolling
Sub-Area $\mathbf{7}$ Mature Forest, Clay Loam, Flat to Rolling

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Data from Windsor A Station via Environment Canada Website - Climate Normals from 1981-2010) ${ }^{\text {a }}$ (${ }^{\text {a }}$													
Average Daily Temperature (${ }^{\circ} \mathrm{C}$)	-3.8	-2.6	2.3	8.9	15	20.5	23	22	17.9	11.3	5.1	-1.2	
Precipitation (mm)	62.1	62.2	70	83	89.3	86.1	89.2	72.6	93.9	72.6	79.6	74.1	934.7
Evapotranspiration Analysis													
Saturation Vapour Pressure (mb)	4.61	5.04	7.21	11.42	17.09	24.18	28.18	26.52	20.56	13.41	8.79	5.60	643.6
PET (Malstrom, 1969) (mm/month)	0.00	0.00	29.50	46.71	69.90	98.90	115.25	108.45	84.09	54.86	35.96	0.00	
Precipitation - PET (mm)	62.10	62.20	40.50	36.29	19.40	-12.80	-26.05	-35.85	9.81	17.74	43.64	74.10	
Weighted Soil Storage Capacity (mm)	146.49	146.49	146.49	146.49	146.49	146.49	146.49	146.49	146.49	146.49	146.49	146.49	
Actual Soil Moisture (mm)	146.49	146.49	146.49	146.49	146.49	133.69	107.64	71.79	81.60	99.34	142.98	146.49	
Change in Soil Moisture (mm)	0.00	0.00	0.00	0.00	0.00	-12.80	-26.05	-35.85	9.81	17.74	43.64	3.52	
Actual Evapotranspiration (mm)	0.00	0.00	29.50	46.71	69.90	98.90	115.25	108.45	84.09	54.86	35.96	0.00	643.6
Recharge/Runoff Analysis													
Surplus	62.1	62.2	40.5	36.3	19.4	0.0	0.0	0.0	0.0	0.0	0.0	70.6	291.1
Deficit	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Weighted Infiltration Factor	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	
Runoff (mm)	34.85	34.90	22.72	20.37	10.89	0.00	0.00	0.00	0.00	0.00	0.00	39.61	163.3
Recharge (mm)	0.00	0.00	103.30	15.93	8.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	127.7

Volume-Based Balance (m^{3})	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Precipitation	2,769,374	2,773,834	3,121,678	3,701,418	3,982,369	3,839,664	3,977,910	3,237,626	4,187,508	3,237,626	3,549,794	3,304,519	41,683,320
Evapotranspiration	0	0	1,315,762	2,082,841	3,117,042	4,410,667	5,139,563	4,836,276	3,750,119	2,446,628	1,603,730	0	28,702,630
Runoff Groundwater Recharge	1,554,027	1,556,529	$1,013,385$ 4,606544	908,260 710317	485,576 3797	0	0	0	0	0	0	1,766,302	7,284,078
Groundwater Recharge	0	0	4,606,544	710,317	379,751	0	0	0	0	0	0	0	5,696,612

TABLE 2 - MONTHLY WATER BALANCE

Windsor Annexed Area

Monthly Water Balance Analysis
 Upper Little River EA

Land Description Factors for Pervious Areas	Sub-Area A	Sub-Area B	Sub-Area C	Sub-Area D	Sub-Area E	Sub-Area F	Sub-Area G	Sub-Area \mathbf{H}	Sub-Area I	Sub-Area J	
Topography	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	
Soils	0.1	0.15	0.2	0.1	0.15	0.1	0.15	0.2	0.1	0.15	
Cover	0.05	0.05	0.05	0.05	0.05	0.15	0.15	0.15	0.05	0.05	
Sum (Infilitration Factor)	0.42	0.47	0.52	0.42	0.47	0.52	0.57	0.62	0.42	0.47	
Soil Moisture Capacity (mm)	150	100	125	150	100	200	250	250	150	100	
Percent Impervious (Assumed)	90\%	90\%	90\%	80\%	80\%	5\%	5\%	5\%	50\%	50\%	
Area (ha)	261.8	46.7	2.0	1006.1	510.5	637.9	203.8	1.5	1086.3	702.8	4459.5
Impervious Area (ha)	236	42	2	805	408	32	10	0	543	351	2429.5
Pervious Area (ha)	26	5	0	201	102	606	194	1	543	351	2030.1
Percentage of Total Pervious Area)	1.3\%	0.2\%	0.0\%	9.9\%	5.0\%	29.9\%	9.5\%	0.1\%	26.8\%	17.3\%	100\%
Total Pervious Area (ha)	2030.1	46\%									
Total Impervious Area (ha) Total Site Area (ha)	2429.5 4459.5	54\%									

Land Cover Descriptions
Sub-Area A Commerical with Urban Lawn, Clay, Rolling to Hilly
Sub-Area B
Sub-Area B Commercial with Urban Lawn, Clay Loam/Clay Sand, Rolling to Hily
Law, Rolling to Hilly
ub-Area D Mixed Use (Urban Lawn), Clay, Rolling to Hilly
位-Area E Mixed Use (Urban Lawn), Clay Loam/Clay Sand, Rolling to Hilly
Sub-Area F Natural Environment (Pasture and Shrubs), Clay, Rolling to Hilly
Sub-Area \mathbf{G} Natural Environment (Pasture and Shrubs), Clay Loam/Clay Sand, Rolling to Hilly Sub-Area H Natural Environment (Pasture and Shrubs), Loam, Rolling to Hilly Sub-Area J Residential with Urban Lawn, Clay Loom/Clay Sand, Rolling to Hilly

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Data from Waterloo Wellington Airport Station via Environment Canada Website - Climate Normals from 1981-2010)													
Average Daily Temperature (${ }^{\circ} \mathrm{C}$)	-3.8	-2.6	2.3	8.9	15	20.5	23	22	17.9	11.3	5.1	-1.2	
Precipitation (mm)	62.1	62.2	70	83	89.3	86.1	89.2	72.6	93.9	72.6	79.6	74.1	934.7
Evapotranspiration Analysis - Pervious Areas													
Saturation Vapour Pressure (mb)	4.6	5.0	7.2	11.4	17.1	24.2	28.2	26.5	20.6	13.4	8.8	5.6	
PET (Malstrom, 1969) (mm/month)	0.0	0.0	29.5	46.7	69.9	98.9	115.2	108.4	84.1	54.9	36.0	0.0	643.6
Precipitation - PET (mm)	62.1	62.2	40.5	36.3	19.4	-12.8	-26.0	-35.8	9.8	17.7	43.6	74.1	
Weighted Soil Storage Capacity (mm)	163.2	163.2	163.2	163.2	163.2	163.2	163.2	163.2	163.2	163.2	163.2	163.2	
Actual Soil Moisture (mm)	163.2	163.2	163.2	163.2	163.2	150.4	124.4	88.5	98.4	116.1	159.7	163.2	
Change in Soil Moisture (mm)	0.0	0.0	0.0	0.0	0.0	-12.8	-26.0	-35.8	9.8	17.7	43.6	3.5	
Actual Evapotranspiration (mm)	0.0	0.0	29.5	46.7	69.9	98.9	115.2	108.4	84.1	54.9	36.0	0.0	643.6
Recharge/Runoff Analysis - Pervious Areas													
Surplus	62.1	62.2	40.5	36.3	19.4	0.0	0.0	0.0	0.0	0.0	0.0	70.6	291.1
Deficit	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Weighted Infiltration Factor	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Runoff (mm)	32.6	32.6	21.2	19.0	10.2	0.0	0.0	0.0	0.0	0.0	0.0	37.0	152.6
Recharge (mm)	0.0	0.0	111.9	17.3	9.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	138.4

MOE WELL RECORDS

$\begin{array}{lll}\text { Township } & \text { Easting } & \text { Northing }\end{array} \begin{aligned} & \text { Year } \\ & \text { Buitt }\end{aligned}$
$\begin{array}{ccccccccc}\text { Casing } & \text { Water } & \text { Static Pump Test } & \begin{array}{c}\text { Pump } \\ \text { Diameter } \\ \text { Found }\end{array} & \text { WL } & \text { WL } & \text { Rest } & \text { Well } & \begin{array}{c}\text { Well } \\ \text { Rate }\end{array} \\ \text { Time } & \text { Depth } & \text { Elevation } & \text { Static } \\ \text { Found } & \text { WL }\end{array}$
Pump

$\begin{array}{lllll}21-02795 & 9 & 19 & \text { Sandwich South } & \text { Sandwich South } 3423\end{array}$

MOE WELL RECORDS

 $\begin{array}{lll}\text { ownship } & \text { Easting } & \text { Northing }\end{array} \begin{gathered}\text { Year } \\ \text { Buitt }\end{gathered}$$\begin{array}{ccccccccc}\text { Year Casing } & \begin{array}{c}\text { Water } \\ \text { Built }\end{array} & \begin{array}{c}\text { Static } \\ \text { Diameter } \\ \text { Found }\end{array} & \text { WL } & \text { WL Test } \\ \text { WL }\end{array} \begin{gathered}\text { Pump } \\ \text { Rate }\end{gathered} \begin{gathered}\text { Test } \\ \text { Time }\end{gathered} \begin{gathered}\text { Well } \\ \text { Depth }\end{gathered} \quad \begin{gathered}\text { Well } \\ \text { Elevation }\end{gathered} \begin{gathered}\text { Water } \\ \text { Found } \\ \text { Elevation }\end{gathered}$

Static WL

\qquad

590
596

$$
\therefore 80 \omega \quad \overrightarrow{0} \quad \dot{0}
$$

四

目

MOE WELL RECORDS
Well ID Conc.
Lot

OE WEL	ECORD Conc.	Lot	Township	Easting	Northing	Year Built	Casing Diameter (inches)	Water Found (feet)	Static WL (feet)	Pump Test WL (feet)	Pump Rate (IGPM)	$\begin{aligned} & \text { Test } \\ & \text { Time } \\ & \text { (hrs) } \end{aligned}$	$\begin{aligned} & \text { Well } \\ & \text { Depth } \\ & \text { (feet) } \end{aligned}$	$\begin{gathered} \text { Well } \\ \text { Elevation } \\ \text { (ft. AMSL) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Water } \\ & \text { Found } \\ & \text { Elevation } \\ & \text { (ft. AMSL) } \end{aligned}$		Pump Rate m3/d	$\begin{aligned} & \text { Pump } \\ & \text { Rate } \\ & \text { L/min } \end{aligned}$		$\begin{gathered} \text { Well } \\ \text { Depth } \\ (\mathrm{m} \text { BGS) } \end{gathered}$	$\begin{gathered} \text { Wells } \\ \text { Depth } \\ \text { (m BGS) } \end{gathered}$	Sreen Length (m BGS)	$\begin{gathered} \text { Well } \\ \text { Elevation } \\ \text { (m AMSL) } \end{gathered}$	$\begin{gathered} \text { Water } \\ \text { Found } \\ \text { Elevation } \\ \text { (m AMSL) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Static } \\ \text { WL } \\ \text { Elevation } \\ \text { (m AMSL) } \end{gathered}$	Test Water Elevation (m AMSL)	Water Level Drawdown Drawo (m)	Height of Water (m)	Height of Water (m)	$\begin{array}{r} \text { Spee } \\ \text { Capa } \\ \mathrm{m} 3 / d \mathrm{~m} \end{array}$	
21-04574	10	10	Sandwich South	343200	4676140	1979	4	111	32	35	10	3.0	111	620	509	588	65.5	45.5		33.8			189.0	155.1	179.2	168.6	0.9	24.1	23.2	71.6	49.7
21-04580	11	16	Sandwich South	343600	4680040	1979	4	100	14	20	4	3.0	103	603	503	589	26.2	18.2		31.4			183.8	$\stackrel{153.3}{1545}$	179.5	173.4	1.8	${ }_{2}^{27.1}$	${ }_{23}^{25.3}$	14.3	9.9
21-04599		296	Sandwich South	342880	4675460	1980	4	113	34	36	15	3.0	113	620	507	586	98.2	68.2		34.4			189.0	${ }^{154.5}$	178.6	167.6	0.6	24.1	${ }^{23.5}$	161.1	111.9
21-04600		295	Sandwich South	342960	4675000	1980	4	109	32	45	12	3.0	109	625	516	593	78.6	54.6		33.2			190.5	157.3	180.7	167.0	4.0	23.5	19.5	19.8	13.8
21-04606		297	Sandwich South	341640	4675500	1981	36	100	36	100	10		100	625	525	589	65.5	45.5		30.5			190.5	160.0	179.5	149.0	19.5	19.5	0.0	3.4	2.3
21-04618		300	Sandwich South	339680	4676160	1980	4	99	38	38	8	2.0	100	620	521	582	52.4	36.4		30.5			189.0	158.8	177.4	165.8	0.0	18.9	18.9		
21-04619		301	Sandwich South	339360	4678288	1980	4	106	40	40	8	2.0	106	625	559	558	${ }_{5}^{52.4}$	36.4		32.3			190.5	158.2	178.3	166.1	${ }^{0.0}$	20.1	${ }^{20.1}$		
21-04643	10	16	Sandwich South	343540	4680260	1980	4	100	14	40	10	4.0	103	600	500	586	65.5	45.5		31.4			182.9	152.4	178.6	166.4	7.9	27.1	19.2	8.3	5.7
21-04644	12	10	Sandwich South	344500 34480	4678120	1960	4	94					95	${ }_{6}^{620}$						29.0			189.0	160.3							
21-04645	12	10	Sandwich South	344480	4676120	1980	4	90	15	36	10	4.0	90	620	530	605	65.5	45.5		27.4			189.0	161.5	184.4	173.4	6.4	22.9	16.5	10.2	7.1
21-04662		302	Sandwich South	338700	4676960	1981	4	129	40	60	10	2.0	129	620	491	580	65.5	45.5		39.3			189.0	149.7	176.8	158.5	6.1	27.1	21.0	10.7	7.5
21-04664	10	11	Sandwich South	342060	4677380	1961	4	127	29	38	15	10.0	127	620	493	591	98.2	68.2		38.7			189.0	150.3	180.1	168.6	2.7	29.9	27.1	35.8	24.9
21-04711		296	Sandwich South	343000	4675320	1982	4	114	33	38	20	24.0	114	625	511	592	130.9	90.9		34.7			190.5	155.8	180.4	168.9	1.5	24.7	23.2	85.9	59.7
21-04728		303	Sandwich South	337920	4676600	1982	4	125	38	50	10	2.0	125	615	490	577	65.5	45.5		38.1			187.5	149.4	175.9	160.6	3.7	26.5	22.9	17.9	12.4
21-04740	9	12	Sandwich South	341920	4677360	1983	4	133	29	34	20	10.0	133	620	487	591	130.9	90.9		40.5			189.0	148.4	180.1	169.8	1.5	31.7	30.2	85.9	59.7
21-04762	8	11	Sandwich South	340300	4677200	1963	4	86	24	29	5	24.0	96	620	534	596	32.7	22.7	24.0	29.3			189.0	162.8	181.7	172.8	1.5	21.9	20.4	21.5	14.9
21-04763	11	12	Sandwich South	344480	4677300	1983	4	78	24	31	7	0.4	91	610	532	586	45.8	31.8		27.7			185.9	162.2	178.6	169.2	2.1	20.4	18.3	21.5	14.9
21-04769		296	Sandwich South	343380	4675260	1984	5	115	32	80	15	1.0	115	620	505	588	98.2	68.2		35.1			189.0	153.9	179.2	154.8	14.6	25.3	10.7	6.7	4.7
21-04795		302	Sandwich South	337620 337920	4675620	1984	4	115	37 35	${ }_{15}^{45}$	12	8.0	115	${ }_{6} 620$	505	583 585	$\begin{array}{r}78.6 \\ \hline 8.6 \\ \hline\end{array}$	54.6		35.1			189.0	153.9	177.7 1783	164.0	2.4	${ }_{3}^{23.8}$	21.3	32.2	22.4
${ }^{211-04829}$		${ }_{3}^{303}$	Sandwich South	337920	4676500	1985	5	138	${ }_{31}^{35}$	$\begin{array}{r}132 \\ \hline 60\end{array}$		2.0	138	620	482	585 589	26.2	18.2 1364 1		${ }_{38.1}$			189.0	146.9	178.3	138.1	$\stackrel{29.6}{8.8}$	31.4 287	1.8	0.9	
21-04907	9	${ }_{14}^{297}$	Sandwich South Sandwich South	342705 340825	4676210	1986 1986	4	125 132	31 15 15	60 25	30 3	18.0 48.0	125 132	620 620	495	589 605	196.4 19.6	136.4 13.6		38.1 40.2			189.0 189.0	150.9 148.7	179.5 184.4	161.2 176.8	8.8 3.0	28.7 35.7	19.8 32.6	22.2 6.4	15.4 4.5
21-04943		296	Sandwich South	342170	4675150	1987	4	103	32	38	12	3.0	110	630	527	598	78.6	54.6		33.5			192.0	160.6	182.3	170.7	1.8	23.8	21.9	43.0	29.8
21-04957		300	Sandwich South	338560	4675305	1987	5	122	41	45	40	3.0	122	620	498	579	261.8	181.8		37.2			189.0	151.8	176.5	162.8	1.2	24.7	23.5	214.8	
21-04972		295	Sandwich South	343350	4675155	1987	5	118	36	41	50	2.0	118	630	512	594	327.3	227.3		36.0			192.0	156.1	181.1	168.6	1.5	25.0	23.5	214.8	149.1
21-04986		303	Sandwich South	336525	4676005	1987	4	122	32	70	3		122	620	498	588	19.6	13.6		37.2			189.0	151.8	179.2	157.9	11.6	27.4	15.8	1.7	1.2
21-05291	7	17	Sandwich South	338875	4680864	1993	2	6		26			11							3.4									-4.6		
21-05292	7	17	Sandwich South	338875	4680864	1993	2	6					12							3.7											
21-05293	7	17	Sandwich South	338875	4680864	1993	2	6					12							3.7											
21-05294	7	17	Sandwich South	338875	4688864	1993	2	6					12							3.7											
${ }^{21-05295}$	7	17	Sandwich South	338875	4688864	1993	2	6					12							3.7											
$\stackrel{21-05333}{21-05334}$			Windsor City	336736 336736	4688469	${ }^{1993}$	2	18 80	18 30	$\stackrel{47}{86}$		${ }_{10}^{0.5}$	60 108							18.3 329							${ }_{171}^{8.8}$	${ }_{2}^{12.8}$	${ }_{6}^{4.0}$		
\bigcirc			Windsor City	336736	4684469	1993	2	6	O	21	0	0.2	22							6.7							4.6	4.9	0.3		
21-05344			Windsor City	336736	4684469	1993																									
21-05400	7	5	Sandwich South	338004	4675178	1994	6	117	38			0.5	117						0.5	35.7								24.1			
21-05405	10	10	Sandwich South Windsor City	342650 336736	446874746	1994 1996	6	$\begin{aligned} & 1111 \\ & \hline 150 \end{aligned}$	30		10	2.0	111				65.5	45.5		33.8								24.7			
21-05488		304	Sandwich South	336675	4676514	1997	8	153	37	150	0	1.0	155							47.2							34.4	36.0	1.5		
21-05535			Windsor City	336736	4684469	1999																									
$\xrightarrow{21-05536}$			Windsor City	336736 336736	4688469	1999																									
21-05589	10	11	Sandwich South	342691	4677320	2001	6		29	50	10	1.0	142				65.5	45.5		43.3							6.4	34.4	28.0	10.2	7.1
21-05605			Windsor City	${ }^{336736}$	4684469	2001	2						22																		
21-05606			Windsor City	336736	4684469	2001	2						24							7.3											
21-05626	7	7	Sandwich South	${ }_{3}^{338009}$	4675416	2001																									
${ }^{21-05660}$	8	303 14	Sandwich South Sandwich South	${ }_{338507}^{33827}$	${ }_{466797887}^{4687}$	2002		130	52			1.0	130							39.6								23.8			
21-05689		303	Sandwich South	338720	4677636	2003																									
23-04669	7		Sandwich South		4680600			153	35	88	5	5.0		620	467				5.0	46.6			189.0	142.3		151.5					

Home \rightarrow Environment and natural resources \rightarrow Weather, Climate and Hazard \rightarrow Past weather and climate \rightarrow Climate Normals \& Averages

Canadian Climate Normals 1981-2010 Station Data

Temperature and Precipitation Graph

Temperature and Precipitation Graph for 1981 to 2010 Canadian Climate Normals WINDSOR A

- Normals Data

The minimum number of years used to calculate these Normals is indicated by a code for each element. A "+" beside an extreme date indicates that this date is the first occurrence of the extreme value. Values and dates in bold indicate all-time extremes for the location.

Data used in the calculation of these Normals may be subject to further quality assurance checks. This may result in minor changes to some values presented here.

\checkmark Temperature														
Temperature														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
Daily Average (${ }^{\circ} \mathrm{C}$)	-3.8	-2.6	2.3	8.9	15.0	20.5	23.0	22.0	17.9	11.3	5.1	-1.2	9.9	A
Standard Deviation	2.9	2.3	1.8	1.5	2.0	1.3	1.3	1.4	1.4	1.6	1.7	2.8	0.8	A
Daily Maximum (${ }^{\circ} \mathrm{C}$)	-0.3	1.1	6.7	14.1	20.4	25.8	28.1	26.9	22.9	15.8	8.8	2.0	14.4	A
Daily Minimum (${ }^{\circ} \mathrm{C}$)	-7.3	-6.3	-2.2	3.7	9.5	15.3	17.9	17.1	12.8	6.7	1.4	-4.3	5.4	A
Extreme Maximum (${ }^{\circ} \mathrm{C}$)	17.8	20.4	26.6	31.1	34.0	40.2	38.3	37.7	37.2	32.2	26.1	19.6		
Date (yyyy/dd)	1950/25	2000/26	1986/30	1990/25	1988/31	1988/25	1941/27	1988/ 17	1953/ 02	1963/06	1950/ 01	1998/ 06		
Extreme Minimum (${ }^{\circ} \mathrm{C}$)	-29.1	-23.4	-19.7	-9.5	-2.8	2.8	5.6	5.2	-1.1	-5.0	-15.6	-23.4		
Date (yyyy/dd)	1994/19	1982/06	2003/ 03	1982/07	1966/10	1945/05	1945/ 11	1982/ 29	1942/29	1965/29	1958/30	1983/30		

- Precipitation														
Precipitation														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
Rainfall (mm)	32.4	35.6	50.9	77.7	89.3	86.1	89.2	72.6	93.9	72.0	74.5	48.3	822.4	A
Snowfall (cm)	37.2	30.5	20.9	5.8	0.0	0.0	0.0	0.0	0.0	0.6	5.5	28.8	129.3	A
Precipitation (mm)	62.1	62.2	70.0	83.0	89.3	86.1	89.2	72.6	93.9	72.6	79.6	74.1	934.6	A
Average Snow Depth (cm)	5	4	1	0	0	0	0	0	0	0	0	2	1	A
Median Snow Depth (cm)	4	3	0	0	0	0	0	0	0	0	0	1	1	A
Snow Depth at Month-end (cm)	4	4	0	0	0	0	0	0	0	0	0	4	1	A

Precipitation														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
Extreme Daily Rainfall (mm)	43.0	70.6	46.4	94.6	54.9	78.0	82.0	79.4	89.0	71.6	48.4	72.6		
Date (yyyy/dd)	1993/ 04	1990/22	2007/01	2000/20	1953/30	1968/25	1983/29	1994/13	1981/30	1949/11	2001/30	1967/21		
Extreme Daily Snowfall (cm)	28.2	36.8	22.4	16.0	0.5	0.0	0.0	0.0	0.0	13.8	34.8	32.3		
Date (yyyy/dd)	1999/02	1965/25	1968/22	2005/23	1954/03	1941/01	1941/01	1940/01	1940/01	1989/19	1966/02	1974/01		
Extreme Daily Precipitation (mm)	43.0	70.6	47.4	94.6	54.9	78.0	82.0	79.4	89.0	71.6	51.1	72.6		
Date (yyyy/dd)	1993/ 04	1990/ 22	2007/01	2000/20	1953/30	1968/25	1983/29	1994/13	1981/30	1949/11	1951/06	1967/21		
Extreme Snow Depth (cm)	36	42	30	14	0	0	0	0	0	0	15	33		
Date (yyyy/dd)	1999/12	1982/ 09	1960/04	1982/ 06	1955/ 01	1955/ 01	1955/01	1955/ 01	1955/01	1955/01	1966/03	2000/31		

\rightarrow Days with Maximum Temperature
\rightarrow Days with Minimum Temperature
\rightarrow Days with Rainfall
\rightarrow Days With Snowfall
\rightarrow Days with Precipitation
\rightarrow Days with Snow Depth
\rightarrow Wind
\rightarrow Degree Days
\rightarrow Humidex
\rightarrow Wind Chill
\rightarrow Humidity
\rightarrow Pressure
\rightarrow Visibility (hours with)
\rightarrow Frost-Free
Amount (hours with)

	Legend
- A = WMO " 3 and 5 rule" (i.e. no more than 3 consecutive and no more than 5 total missing for either temperature or precipitation)	- C = At least 20 years - $D=$ At least 15 years

- Station / Element Metadata

Statistics listed below are provided as a guide to determine the validity of Normals and Extremes calculations. For example, a station with 30 years of record between 1981 and 2010 with no missing years would be a more reliable normal than a station with 15 years of record and 2 missing years. Less than 100% possible observations indicates that out of the total number of observations used, some records were missing.

WINDSOR A

Province	ON	Latitude (dd mm)	4216 N
Country	CAN	Longitude (ddd mm)	8257 W
Time Zone	EST	Latitude (decimal degrees):	42.28 N
Climate ID:	6139525	Longitude (decimal degrees):	82.96 W
WMOID:	71538	Elevation (m):	189.6
TC ID:	YQG		

- Temperature						
Temperature						
	Begin Year	End Year	Total Number of Years	Missing Years	Total Count of Observations	\% of Possible Observations
Daily Average (${ }^{\circ} \mathrm{C}$)	1981	2010	30	0	10956	100

Temperature						
	Begin Year	End Year	Total Number of Years	Missing Years	Total Count of Observations	\% of Possible Observations
Standard Deviation	1981	2010	30	0	10956	100
Daily Maximum (${ }^{\circ} \mathrm{C}$)	1981	2010	30	0	10956	100
Daily Minimum (${ }^{\circ} \mathrm{C}$)	1981	2010	30	0	10956	100
Extreme Maximum (${ }^{\circ} \mathrm{C}$)	1940	2010			25718	100
Extreme Minimum (${ }^{\circ} \mathrm{C}$)	1940	2010			25719	100
\checkmark Precipitation						
Precipitation						
	Begin Year	End Year	Total Number of Years	Missing Years	Total Count of Observations	\% of Possible Observations
Rainfall (mm)	1981	2010	30	1	10926	99.7
Snowfall (cm)	1981	2010	30	1	10926	99.7
Precipitation (mm)	1981	2010	30	1	10926	99.7
Average Snow Depth (cm)	1981	2010	30	0	10955	100
Median Snow Depth (cm)	1981	2010	30	0	10955	100
Snow Depth at Month-end (cm)	1981	2010	30	1	359	99.7
Extreme Daily Rainfall (mm)	1940	2010			25719	100
Extreme Daily Snowfall (cm)	1940	2010			25719	100
Extreme Daily Precipitation (mm)	1940	2010			25719	100
Extreme Snow Depth (cm)	1955	2010			20452	100
- Days with Maximum Temperature						
- Days with Minimum Temperature						
- Days with Rainfall						
- Days With Snowfall						
- Days with Precipitation						
- Days with Snow Depth						
- Wind						
- Degree Days						
Humidex						
- Wind Chill						
- Humidity						
- Pressure						
- Visibility (hours with)						
- Cloud Amount (hours with)						
- Frost-Free						
- Calculation Information						
- Calculation Method - Normals Code - Uncertainty due to shorter period - Standard Deviation Calculations - Climate Extremes - Support Information - Data and Observing Stations - APPENDIXA						
"Climate averages", "climate means" or "climate normals" are all interchangeable terms. They refer to arithmetic calculations based on observed climate values for a given location over a specified time period. Climate normals are often used to classify a region's climate and make decisions for a wide variety of purposes involving basic habitability, agriculture and natural vegetation, energy use, transportation, tourism, and research in many environmental fields. Normals are also used as a reference for seasonal monitoring of climate temperature and precipitation for basic public interest, and for monitoring drought or forest fires risk. Real-time values, such as daily temperature, are often compared to a location's "climate normal" to determine how unusual or how great the departure from "average" they are. The World Meteorological Organization (WMO) recommends that countries prepare climate normals for the official 30 -year normals periods ending in 1930, 1960 and 1990, for which the WMO World Climate Normals are published. In addition, WMO recommends the updating of climate normals at the end of every decade as provided here for 1981 to 2010.						

- Calculation Method

Normals Code

- Uncertainty due to shorter period

- Standard Deviation Calculations

Climate Extremes

- Support Information
- Data Adjustments
- Data and Observing Stations
- Temperature

Rainfall, Snowfall, and Precipitation
-Snow Depth

- Number of Days With Specified Parameters
- Degree-Days
-Soil Temperature
- Evaporation
- Frost and Freezing-Free Period
- Hourly Data

Wind

Bright Sunshine

- Humidex

Wind Chil

Humidity

Pressure

Solar Radiation

- Visibility (km)

Cloud Amount

- APPENDIX A

Date modified:

2016-06-22

APPENDIX H

 Hydrology| | | Proosed Land Use (\%) | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area Descripion | $\begin{aligned} & \text { Catchment } \\ & \text { Number } \end{aligned}$ | Area | Residential (Low Density) | $\begin{gathered} \text { Residential } \\ , \\ , \end{gathered} \left\lvert\, \begin{gathered} \text { Menium } \\ \text { Density) } \end{gathered}\right.$ | $\begin{aligned} & \text { Spen } \\ & \text { Spacel } \\ & \text { Papkre } \end{aligned}$ | Instituional | Commerial | Mixed Use | Employment | Industrial | Stormwater
 Management | Existing Urban | Total | Total
 mperviousness | $\underset{\substack{\text { Total Imperious } \\ \text { Area }}}{\text { and }}$ |
| | | (ha) | (\%) | (\%) | (\%) | (\%) | (\%) | (\%) | (\%) | (\%) | (\%) | (\%) | (\%) | (\%) | (ha) |
| Exisiting Urban | 2000 | 91.38 | \% | 0\% | \% | \% | \% | 0\% | \% | 0\% | 0\% | 100\% | 100\% | 60\% | 54.8 |
| Exisiting Urian | 2002 | 156.40 | 0\% | 0\% | \% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 93.8 |
| Exising U Urban | 2005 | 48.04 | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 28.8 |
| Exising U Uroan | 2007 | 20.71 | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 12.4 |
| Exisiting Urban | 2010 | 40.96 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 24.6 |
| Exising U Uroan | 2015 | 10.55 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 6.3 |
| Proposed Development | 2020 | 66.13 | 30\% | 5\% | 5\% | 25\% | 30\% | 0\% | 0\% | 0\% | 5\% | 0\% | 100\% | 67\% | 44.1 |
| Exisiting Urban | 2025 | 12.64 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 7.6 |
| Exising U Uroan | 2027 | 59.42 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 35.7 |
| Proposed Development | 2030 | 117.58 | 45\% | 5\% | 10\% | 0\% | 0\% | 0\% | 0\% | 0\% | 5\% | 35\% | 100\% | 49\% | 57.9 |
| Proposed Development | 2035 | 81.42 | 40\% | 0\% | 0\% | 20\% | 20\% | 10\% | 0\% | 0\% | 10\% | 0\% | 100\% | 63\% | 51.3 |
| Exising U Uroan | 2040 | 25.60 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 15.4 |
| Proposed Development | 2045 | 63.81 | 40\% | 0\% | 15\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% | 35\% | 100\% | 43\% | 27.4 |
| Proposed Development | 2050 | 97.34 | 20\% | 0\% | 15\% | 0\% | 0\% | 0\% | 55\% | 0\% | 10\% | 0\% | 100\% | 47% | 45.5 |
| Proposed Development | 2055 | 65.11 | 65\% | 20\% | 5\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% | 0\% | 100\% | 50\% | 32.4 |
| Proposed Development | 2060 | 112.73 | 15\% | 5\% | \% | \% | 0\% | 0\% | 70\% | 0\% | 10\% | 0\% | 100\% | 57\% | 64.5 |
| Proposed Development | 2065 | ${ }^{116.33}$ | 0\% | 0\% | 0\% | 0\% | 45\% | 0\% | 0\% | 45\% | 10\% | 0\% | 100\% | 77\% | 89.0 |
| Exising Agriculutral | 2070 | 94.85 | 0\% | 0\% | 100\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | \% | 0.0 |
| Exising U Uran | 2072 | 42.27 | \% | 0\% | 0\% | \% | \% | \% | \% | \% | 0\% | 100\% | 100\% | 60\% | 25.4 |
| Exising Agriculutral | 2073 | 80.41 | 0\% | 0\% | 100\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0.0 |
| Proposed Development and Agri | 2075 | 117.69 | 0\% | 0\% | 40\% | 0\% | 30\% | 30\% | 0\% | 0\% | 0\% | 0\% | 100\% | 47\% | 54.7 |
| Proposed Development and Agrin | 2080 | 69.76 | 20\% | \% | 80\% | \% | \% | 0\% | \% | \% | 0\% | 0\% | 100\% | 11\% | 7.7 |
| Proposed Development and Agri. | 2085 | 100.90 | 0\% | 0\% | 50\% | 0\% | 0\% | 50\% | 0\% | 0\% | 0\% | 0\% | 100\% | 35\% | 35.3 |
| Exising Agriculutral | 2087 | 133.74 | 0\% | \% | 100\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0.0 |
| Proposed Development | 2090 | 72.83 | 25\% | \% | 30\% | \% | 20\% | \% | \% | \% | 25\% | 0\% | 100\% | 31\% | 22.4 |
| Proposed Development | 2095 | 117.98 | 0\% | 0\% | 20\% | 0\% | 30\% | 30\% | 0\% | 0\% | 20\% | 0\% | 100\% | 47\% | 54.9 |
| Proposed Development | 2100 | 50.57 | 45\% | 45\% | 0\% | \% | 0\% | 0\% | 0\% | \% | 10\% | 0\% | 100\% | 56\% | 28.4 |
| Proposed Development | 2105 | 60.91 | 90\% | \% | \% | \% | 0\% | \% | \% | \% | 10\% | 0\% | 100\% | 50\% | 30.2 |
| Proposed Development | 2110 | 49.79 | 95\% | 0\% | 5\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 52\% | 26.0 |
| Proposed Development | 2115 | 113.58 | 20\% | 0\% | 20\% | \% | 0\% | 0\% | 40\% | \% | 20\% | 0\% | 100\% | 37\% | 42.0 |
| Proposed Development | 2125 | 93.38 | 100\% | \% | 0\% | \% | 0\% | \% | 0\% | \% | 0\% | 0\% | 100\% | 55\% | 51.4 |
| Proposed Development | 2130 | 80.55 | 0\% | 0\% | 0\% | 0\% | 75\% | 0\% | 25\% | 0\% | 0\% | 0\% | 100\% | 80\% | 64.4 |
| Proposed Development | 2133 | 93.08 | 0\% | 0\% | \% | \% | 0\% | 0\% | 100\% | \% | 0\% | 0\% | 100\% | 65\% | 60.5 |
| Proposed Development | 2135 | 22.82 | 90\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% | 0\% | 100\% | 50\% | 11.3 |
| Proposed Development | 2140 | 82.10 | 60\% | 0\% | 30\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% | 0\% | 100\% | 33\% | 27.1 |
| Exising Agriculutral | 2145 | 104.35 | 100\% | 0\% | 0\% | \% | 0\% | 0\% | 0\% | \% | 0\% | 0\% | 100\% | 55\% | 57.4 |
| Proposed Development | 2155 | 77.27 | 90\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 10\% | 0\% | 100\% | 50\% | 38.2 |
| Proposed Development | 2165 | 179.12 | 20\% | 20\% | 15\% | 10\% | 5\% | 0\% | 0\% | 0\% | 5\% | 25\% | 100\% | 53\% | 94.5 |
| Proposed Development | 2175 | 47.30 | 10\% | 0\% | \% | 0\% | 40\% | 0\% | 40\% | \% | 10\% | 0\% | 100\% | 66\% | 31.0 |
| Exising U Uraan | 2180 | 102.00 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 5\% | 95\% | 100\% | 57\% | 58.1 |
| Proposed Development | 2185 | 65.40 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 85\% | 0\% | 15\% | 0\% | 100\% | 55\% | 36.1 |
| Proposed Development | 2190 | 84.96 | 30\% | 10\% | 5\% | \% | 0\% | 0\% | 0\% | \% | 5\% | 50\% | 100\% | 54\% | 45.5 |
| Proposed Development | 2200 | 784.14 | 0\% | 0\% | 50\% | 0\% | 0\% | 0\% | 10\% | 35\% | 5\% | 0\% | 100\% | 36\% | 284.3 |
| Proposed Development | 2210 | 58.24 | 0\% | 0\% | 0\% | 0\% | 30\% | 0\% | 30\% | 0\% | 10\% | 30\% | 100\% | 63\% | 36.7 |
| Proosesed Development | 2215 | 106.67 | 15\% | 10\% | 5\% | 0\% | 10\% | 5\% | 0\% | 0\% | 5\% | 50\% | 100\% | 5\% | 61.1 |
| Exising U Urian | 2220 | 144.51 | 0\% | 0\% | \% | \% | 0\% | 0\% | 5\% | 5\% | 0\% | 90\% | 100\% | 62\% | 88.9 |
| Exising U Uraan | 2225 | 42.22 | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 100\% | 100\% | 60\% | 25.3 |
| Total | | 4459.54 | | | | | | | | | | | | | 2090.3 |
| Average | | 94.88 | 23\% | 3\% | 15\% | 1\% | 7\% | 3\% | 10\% | 2% | 5\% | 32\% | 100\% | 50\% | 44.5 |
| Notes: | | | | | | | | | | | | | | | |
| Imperious Standards | | Typical Pond CharacteristicsAverage pond cross section | | | | | | | | | | | | | |
| | ${ }_{\text {\% }}^{\substack{\text { Impensious } \\ 0.55}}$ | | | | | | | | | | | | | | |
| Residential (Low Density) | | Average pond cross section
 Top of PP width 65 m | | | | | | | | | | | | | |
| Residential (Medium Density) | 0.70 | $\underset{\substack{\text { Botom of PP width } \\ \text { PP Depth }}}{ }$ | | 50 m | | | | | | | | | | | |
| Open Space/Paks | 0.00 | | | 1.5 | | | | | | | | | | | |
| Institutional | 0.85 | PP cross sectional area | | 86 m ${ }^{2}$ | | | | | | | | | | | |
| Commercial | 0.85 | | | | | | | | | | | | | | |
| Mixed Use | 0.70 | Active Depth | | 2 m | | | | | | | | | | | |
| Employment | 0.65 | Top of Active Depth (5:1 slopes) Active cross section area | | $\begin{aligned} & 85 \mathrm{~m} \\ & 150 \mathrm{~m}^{2} \end{aligned}$ | | | | | | | | | | | |
| Industria | 0.85 | | | | | | | | | | | | |
| Stormwater Management | 0.00 | | | | | | | | | | | | | | | | |
| Exising Uraan | 0.60 | | | | | | | | | | | | | | |

CatchmentNumber	Water Quality Requirements						SW Corrido Sizing Calulations													
	$\begin{aligned} & \text { Water } \\ & \text { Quality } \\ & \text { Volume } \\ & \text { Required } \end{aligned}$	Permanent Pool Volume Required	Extended Detention Volume Required	$\begin{array}{\|l\|l} \hline \text { Total Water } \\ \text { Oualite } \\ \text { Volumed } \\ \text { Required } \end{array}$	$\begin{gathered} \text { Permanent } \\ \text { Pool Volume } \\ \text { Required } \end{gathered}$	$\begin{aligned} & \text { Exerended } \\ & \text { Deiention } \\ & \text { Deoliume } \\ & \text { Reacaired } \end{aligned}$	Average SWM Area Cranent Pool Cross Section		depth	Assigned Corridor Length	$\begin{array}{\|c\|} \hline \text { Surface } \\ \text { Area a } \\ \text { Permanent } \\ \text { Peool } \\ \text { Elevation } \end{array}$	$\left\lvert\, \begin{gathered} \text { Extended } \\ \text { Exention } \\ \text { Surface Area } \end{gathered}\right.$	$\begin{gathered} \text { Weir } \\ \text { Elevation } \\ \text { Surface Area } \end{gathered}$	Active Storage Surface Area	$\begin{gathered} \text { Extended } \\ \text { Detention } \\ \text { Volume } \\ \hline \end{gathered}$		$\begin{gathered} \begin{array}{c} \text { Total avialable } \\ \text { Storaseg Volume } \\ \text { (2m depoth) } \end{array} \end{gathered}$	Max Storage Volume / unit area	$\begin{array}{\|c\|c} \hline \text { Permanent } \\ \text { Pool Surface } \\ \text { Area per ha of } \\ \text { Drainage Area } \end{array}$	
	(mha)	(mha)	(m^{3} /a)	$\left(m^{3}\right)$	$\left(\mathrm{m}^{3}\right)$	(m)	$\left(m^{2}\right)$	(m)	(m)	(m)	$\left(m^{2}\right)$	$\left(m^{2}\right)$	$\left(m^{2}\right)$	$\left(\mathrm{m}^{2}\right)$	$\left(m^{3}\right)$	$\left(\mathrm{m}^{3}\right)$	$\left(m^{3}\right)$	(mha)	(mha)	(m²ha)
2000																				
2002																				
2005																				
2007																				
2010																				
2015																				
2020	126	86	40	${ }^{8,310}$	5.665	2,645	86	394	414	600	25,616	${ }^{26,538}$	35,198	35,198	5,215	60,814	60.814	920	97	532
2025																				
2027																				
2030	104	64	40	12,258	7,555	4,703	86	526	546	1400	34,160	35,345	46,370	46,370	6,950	80,530	80,530	685	73	394
2035	121	81	40	9,825	6,568	${ }^{3,257}$	86	457	477	600	29,998	30,746	40.536	40,536	6,044	70,234	70,234	863	91	498
2040																				
2045	98	58	40	6,253	3,701	2,552	86	257	277	600	16,735	17,384	23,584	23,584	3,412	40,319	40,319	632	66	370
2050	102	62	40	9,904	6,011	3,894	86	418	438	600	27,179	28,49	37,242	37,242	5,533	64,421	64,421	662	70	383
2055	105	65	40	6,820	4,216	2,604	86	293	313	600	${ }^{19,063}$	19,784	26,629	26,629	3,885	45,992	45,992	702	73	409
2060	113	73	40	12,738	8,229	4,509	86	572	592	700	37,211	38,490	50,360	50,360	7,570	87,571	87,571	777	83	447
2065	139	99	40	16,131	${ }^{11,478}$	4,653	86	798	818	1000	51,900	53,631	6, 569	6, 6969	10,553	121,469	121,469	1044	112	598
2070																				
2072																				
2073																				
2075	102	62	40	${ }^{11,946}$	7,238	4,708	86	504	524	1000	32,728	3, 869	44,498	44,498	6,660	77,226	77,226	656	70	378
2080	66	26	40	4,604	1,814	2,790	86	126	146	700	8,201	8,588	12,425	12,425	1,679	20,626	20,626	296	29	178
2085	90	50	40	9,081	5,045	4,036	86	351	371	700	22,812	${ }^{23,648}$	3,531	31,531	4,646	54,343	54,343	539	57	313
2087																				
2090	86	46	40	6,245	3,332	2,913	86	232	252	600	15,066	15,664	21,402	21,402	3,073	36,468	36,468	501	52	294
2095	102	62	40	11,975	7,256	4,719	86	505	525	1000	32,809	33,952	44,604	44,604	6.676	77,412	77,412	656	70	378
2100	112	72	40	5,647	3,624	2,023	86	252	272	600	16,388	17,026	23,130	23,130	3,341	3,518	39.518	781	81	457
2105	105	65	40	6,365	3,929	2,436	86	${ }^{273}$	293	600	${ }^{17,765}$	18,445	${ }^{24,931}$	24,931	3,621	${ }^{42,695}$	${ }^{42,695}$	701	73	409
2110	107	67	40	5.340	3,348	1,992	86	233	253	600	15,140	15,740	21,499	21,499	3.088	36.640	36.640	736	76	432
2115	92	52	40	10,449	5,906	4,543	86	411	431	600	26,706	27,62	${ }^{36,623}$	${ }^{36,623}$	5,437	6,329	6,323	558	59	322
2125	110	70	40	10,272	6,537	${ }^{3,735}$	86	455	475	600	2,957	30,600	40,351	40,351	6,016	69,908	6,908	749	79	432
2130	143	103	40	11,546	8,324	3,222	86	579	599	700	37,637	38,229	50,917	50,917	7,657	88,554	88.554	1099	117	632
2133	123	83	40	${ }^{11,480}$	7,757	3,723	86	540	560	600	35,074	36,287	47,566	47,566	7,136	82,639	82,639	888	94	511
2135 2140	105	65	40	2,385	${ }_{1,472}$	913	86	102	122	600	6,656	6,994	10,403	10,403	1,365	17,059	17,059	748	73	456
$\frac{2140}{2145}$	88	48	40	7,225	3,941	3,884	86	274	294	1000	17,819	18,502	25,002	25,02	3,632	42,821	42,821	522	54	305
$\frac{2145}{2155}$											${ }^{22,536}$	${ }^{23,363}$	${ }^{31,170}$	${ }^{31,170}$	4.590	${ }^{53,706}$	${ }^{53,706}$	695		
2155 2165	105 108	${ }_{65}^{68}$	${ }_{40}^{40}$	8,075 19,300	4,984 12,135	3,091 7,165	${ }_{86}^{86}$	${ }_{844}^{347}$	367 864	$\frac{600}{1100}$	${ }_{54,873}^{22,36}$	${ }^{23,663}$	${ }^{3,170} 7$	3,140 73,45	$\stackrel{4,590}{11,157}$	${ }^{553,706} 1$	53,06 128,30	716	${ }_{77}$	${ }_{403}^{410}$
2175	124	84	40	${ }^{5,865}$	3,973	${ }^{1,892}$	86	276	${ }_{296}$	700	${ }^{17,966}$	${ }^{18,653}$	${ }^{25,194}$	25,194	${ }^{3,662}$	43,159	43,159	912	95	533
2180																				
2185	110	70	40	7,216	4.600	2.616	86	320	340	600	20,799	2, 1,573	28,899	28,899	4,237	49,698	49,698	760	80	442
2190	109	69	40	9,218	5,820	3,398	86	405	425	900	26,315	27,259	36,112	36,112	5,357	${ }^{62,428}$	62,428	735	77	425
2200	91	51	40	71,553	40,187	31,366	86	2796	2816		181,716	187,441	${ }^{239,329}$	239,329	36,916	421,044	421,044	537	58	305
2210	${ }^{121}$	81	40	7,028	$\stackrel{4.698}{7,787}$	${ }_{2,330}^{4,37}$	${ }^{86}$	327	347	1000	${ }^{21,243}$	${ }^{22,031}$	29,480	29,480	4,327	${ }^{50,723}$	${ }^{50,723}$	${ }^{871}$	91	506
2215 2220	113	73	40	12,054	7,787	$\stackrel{4,267}{ }$	86	542	562	600	${ }^{35,210}$	${ }^{36,428}$	47,744	${ }^{47,744}$	7,164	${ }^{82,955}$	${ }^{82,955}$	778	${ }^{83}$	448
2220 2225																				
2225																				
				337,107	207,128	129,980		14,409			${ }_{936,578}$	${ }_{969,416}$	1,275,756	1,275,756	190,599	2,212,333	${ }_{\text {2, 212,333 }}$			
	107	67	40	11237	6904	4333	86											724	76	420

	SWM Corridor Elevations						Depth of Pond Check			SWM Outlet Configuration						Storm Sewer Depth Calculations					
Catchment Number	Estimated Outlet Channel Invert	Permanent Pool $\begin{array}{c}\text { Oftset From } \\ \text { Channel }\end{array}$	Permanent Pool Elevation	Low Orifice Invert Elevation	High Oritice Invert Elevation	Overfiow Weir Elevation	$\underset{\substack{\text { Approximate } \\ \text { Ground } \\ \text { Elevation }}}{\substack{\text { are }}}$	Permanent Pool Elevation	Depth of pond	$\begin{array}{\|l\|l\|} \hline \text { Low orifice } \\ \text { A. Averae } \\ \text { Flow of 36 } \\ \text { hour } \\ \text { drawdown } \end{array}$		$\begin{array}{\|c} \hline \text { Low Orifice } \\ \text { Diameter } \end{array}$	$\left\|\begin{array}{c} \text { High Orifice } \\ \text { AAerage } \\ \text { Flow } \end{array}\right\|$	$\begin{aligned} & \text { High } \\ & \text { Hife } \end{aligned}$	$\left\|\begin{array}{c} \text { High } \\ \text { Oifice } \\ \text { Diameter } \end{array}\right\|$	$\left\|\begin{array}{l} \text { Permanent } \\ \text { Pelvation } \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { Estimate } \\ \text { Pipe Length } \\ \text { from Pond } \\ \text { to Upstream } \\ \hline \end{array}$	$\|$Upstream Elevation E.35 at slope slo	Upstream Ground Elevation	$\begin{array}{c\|} \hline \text { Cover } \\ \text { available with } \\ 1.2 \mathrm{~m} \\ \text { Diameter } \\ \text { Pine } \end{array}$	$\begin{array}{\|l\|l} \text { Essimated } \\ \text { deptet } \\ \text { dsorom } \\ \text { sewer } \end{array}$
	(m)	$\left(\mathrm{m}^{3} \mathrm{~s}\right)$	$\left(\mathrm{m}^{2}\right)$	(m)	$\left(\mathrm{m}^{3} \mathrm{~s}\right)$	$\left(\mathrm{m}^{2}\right)$	(m)														
2000																					
2002																					
2005																					
2007																					
2010																					
2015																					
2020	186.40	0.50	186.90	186.90	187.10	188.90	190.0	186.90	3.1	0.020	0.034	0.200	0.384	0.102	0.360	186.90	500	188.65	190.6	0.8	1.9
2025																					
2027																					
2030	184.80	0.50	185.30	185.30	185.50	187.30	188.5	185.30	3.2	0.036	0.061	0.270	0.882	0.181	0.480	185.30	1400	190.20	189.3	2.1	${ }^{0.9}$
2035	185.40	0.50	185.90	185.90	186.10	187.90	188.0	185.90	2.1	0.025	0.042	0.230	0.472	0.125	0.390	185.90	700	188.35	190	0.5	1.7
2040																					
2045	183.20	0.50	183.70	183.70	183.90	185.70	186.5	183.70	2.8	0.020	0.033	0.200	0.370	0.098	0.350	183.70	800	186.50	186.7	1.0	0.2
2050	184.40	0.50	184.90	184.90	185.10	186.90	187.0	184.90	2.1	0.030	0.051	0.250	0.565	0.150	0.430	184.90	1000	188.40	190	0.4	1.6
2055	182.20	0.50	182.70	182.70	182.90	184.70	185.0	182.70	2.3	0.020	0.034	0.200	0.378	0.100	0.350	182.70	800	185.50	186.4	.0.3	0.9
2060	183.40	0.50	183.90	183.90	184.10	185.90	186.0	183.90	2.1	0.035	0.059	0.270	0.654	0.174	0.470	183.90	1400	188.80	190	0.0	1.2
2065	185.72	0.50	186.22	186.22	186.42	188.22	189.0	186.22	2.8	0.036	0.060	0.270	0.675	0.179	0.470	186.22	1300	190.77	190	-2.0	${ }^{-0.8}$
2070	185.72	0.50	186.22	186.22	186.42	188.22	189.0	186.22					0.550	0.154	0.440	186.22	1400	191.12	190	. 2.3	${ }^{1.1}$
2072																					
2073	185.72	0.50	186.22	186.22	186.42	188.22	189.0	186.22	2.8					0.000	0.000	186.22	1800	192.52	190	${ }^{3.7}$	2.5
2075	187.00	0.50	187.50	187.50	187.70	189.50	192.0	187.50	4.5	0.036	0.061	0.270	0.683	0.181	0.480	187.50	1800	193.80	190	. 5.0	${ }^{-3.8}$
2080	187.00	0.50	187.50	187.50	187.70	189.50	191.0	187.50	3.5	0.022	0.036	0.210	0.405	0.107	0.360	187.50	900	${ }^{190.65}$	190	-1.8	-0.7
2085	187.25	0.50	187.75	187.75	187.95	189.75	191.0	187.75	${ }^{3} .3$	0.031	0.052	0.250	0.585	0.155	0.440	187.75	1900	194.40	190	. 5.6	4.4
2087																					
2090	180.92	1.50	182.42	182.42	182.62	184.42	184.5	182.42	2.1	0.022	0.038	0.210	0.422	0.112	0.370	182.42	1000	185.92	185.5	${ }^{-1.6}$	${ }^{-0.4}$
2095	182.40	0.50	182.90	182.90	183.10	184.90	185.5	182.90	2.6	0.036	0.061	0.270	0.684	0.182	0.480	182.90	1300	187.45	190	1.3	2.5
2100	180.92	1.00	181.92	181.92	182.12	183.92	185.0	181.92	3.1	0.016	0.026	0.180	0.293	0.078	0.310	181.92	1000	185.42	185.3	${ }^{-1.3}$	${ }^{0} .1$
2105	181.90	0.50	182.40	182.40	182.60	184.40	185.0	182.40	2.6	0.019	0.032	0.200	0.353	0.094	0.340	182.40	900	185.55	185.5	-1.3	-0.1
2110	180.06	1.50	181.56	181.56	181.76	183.56	185.0	181.56	3.4	0.015	0.026	0.180	0.289	0.077	0.310	181.56	900	184.71	184.1	-1.8	${ }^{-0.6}$
2115	180.06	1.50	181.56	181.56	181.76	183.56	183.5	181.56	1.9	0.035	0.059	0.270	0.659	0.175	0.470	181.56	2300	189.61	186.1	. 4.7	${ }^{-3.5}$
2125	179.10	1.50	180.60	180.60	180.80	182.60	184.5	180.60	3.9	0.029	0.048	0.240	0.542	0.144	0.420	180.60	1250	184.98	184.3	-1.9	-0.7
2130	182.40	0.50	182.90	182.90	183.10	184.90	186.0	182.90	3.1	0.025	0.042	0.230	0.467	0.124	0.390	182.90	1200	187.10	187.5	-0.8	0.4
2133	183.40	0.50	183.90	183.90	184.10	185.90	186.0	183.90	2.1	0.029	0.048	0.240	0.540	0.143	0.420	183.90	1200	188.10	187.5	-1.8	${ }^{-0.6}$
2135	178.67	1.50	180.17	180.17	180.37	182.17	182.0	180.17	1.8	0.007	0.012	0.120	0.132	0.035	0.210	180.17	1100	184.02	182.3	-2.9	-1.7
2140	178.70	1.00	179.70	179.70	179.90	181.70	183.0	179.70	${ }^{3} .3$	0.025	0.043	0.230	0.476	0.126	0.400	179.70	750	182.33	182.5	-1.0	0.2
2145																					
2155	178.68	1.50	180.18	180.18	180.38	182.18	183.5	180.18	3.3	0.024	0.040	0.220	0.448	0.119	0.380	180.18	1500	185.43	182.5	${ }^{4.1}$	-2.9
2165	179.40	0.50	179.90	179.90	180.10	181.90	183.0	179.90	${ }^{3} 1$	0.055	0.093	0.340	1.039	${ }^{0.276}$	0.590	179.90	1400	184.80	185	1.0	0.2
2175	178.30	0.50	178.80	178.80	179.00	180.80	182.0	178.80	3.2	0.015	0.025	0.170	0.274	0.073	0.300	178.80	700	181.25	183.5	1.1	${ }^{2.3}$
2180																					
2185	178.00	1.50	179.50	179.50	179.70	181.50	182.0	${ }^{179.50}$	2.5	0.020	0.034	0.200	0.379	0.101	0.350	179.50	700	181.95	182.5	${ }^{0.6}$	0.6
2190	178.75	0.50	179.25	179.25	179.45	181.25	182.5	179.25	3.3	0.026	0.044	0.230	0.493	0.131	0.400	179.25	1000	182.75	184.5	0.6	1.8
2200	178.95	0.50	179.45	179.45	179.65	181.45	183.0	179.45	3.6	0.242	0.407	0.720	4.548	1.208	1.240	179.45	3600	192.05	189.1	-4.1	-2.9
2210	178.40	0.50	178.90	178.90	179.10	180.90	183.0	178.90	4.1	0.018	0.030	0.190	0.338	0.090	0.330	178.90	700	${ }^{181.35}$	183.5	1.0	2.2
2215	179.00	0.50	179.50	179.50	179.70	18.50	182.5	179.50	3.0	${ }^{0.033}$	0.055	0.260	0.619	0.164	0.450	179.50	1200	183.70	185	0.1	1.3
2220																					
2225																					
										1.003			19.397								
										0.033	0.056	0.244	0.626	0.161	0.412						

[AS]	[AT]	[AU]	[AV]	${ }^{\text {aw] }}$	[AX]
c	0.60		c	0.60	
height Δ sheigh $t_{\text {max }}$ drawdown (hr)	0.0		height ${ }_{\text {mox }}$	0.2	
	0.2		sheightmax	1.8	
	36		drawdown (hri	12	
[AS]	Extended Detention Volume / Drawdown time				
[AT]	(ASI ${ }^{2}$) ($\left.0^{*}\left(2^{*} \mathrm{~g}^{*}+4 h\right)^{0.5}\right)$				
[AU]	$\left.2^{2}(A T) / \pi\right)^{0.5}$				
[AV]	0.116 ${ }^{\circ}$ Area $0.05=$ muncipal drain capacity or 50 mm of unoff over 24 hours				
${ }^{\text {aw] }}$					
[AX]	$\left.{ }^{2} \cdot(1 A W) /\right)^{0.5}$				

Little River
Single Station Frequency Analysis

Transposition of Flood Discharges
As per Equation 8.31 in MTO Drainage Manual (1997)

$$
Q_{2}=Q_{1}\left(\frac{A_{2}}{A_{1}}\right)^{0.75}
$$

where
$\mathrm{Q}_{1}=$ known peak discharge
$Q_{2}=$ unknown peak discharge
$\mathrm{A}_{1}=$ known basin area
$\mathrm{A}_{2}=$ unknown basin area

Modified Index Flood Method
 Southern Ontario Type Basin Upper Little River

Watershed Area - A	$\begin{array}{r} 44.9 \mathrm{~km}^{2} \\ 2 \mathrm{~km}^{2} \end{array}$	
Water Storage Area - A_{d}		
Storage (\%) - $\mathrm{A}_{\mathrm{d}} / \mathrm{A}$	4.5 \%	
CN	82	
Slope	0.15%	
Base Watershed Class	10.1 From Design Chart 1.17	
Slope adjustment	-0.82 From Design Chart 1.18	
Storage adjustment	-0.50 From Design Chart 1.19	
Net adjustment	-1.32	
Net Watershed Class	8.73	
Class Coefficient	2.38 From Design Chart 1.15	
$\mathrm{Q}_{2.33}=\mathrm{Q}_{25}{ }^{*} 0.46$	19.0 m ${ }^{3} / \mathrm{s}$	From Design
$\mathrm{Q}_{5}=\mathrm{Q}_{25}{ }^{*} 0.65$	26.9 m/s	From Design
$\mathrm{Q}_{10}=\mathrm{Q}_{25}{ }^{*} 0.80$	$33.1 \mathrm{~m}^{3} / \mathrm{s}$	From Design
$\mathrm{Q}_{25}=\mathrm{CxA}^{0.75}$	$41.3 \mathrm{~m}^{3} / \mathrm{s}$	
$\mathrm{Q}_{50}=\mathrm{Q}_{25} * 1.15$	$47.5 \mathrm{~m}^{3} / \mathrm{s}$	From Design
$\mathrm{Q}_{100}=\mathrm{Q}_{25}{ }^{*} 1.29$	$53.3 \mathrm{~m}^{3} / \mathrm{s}$	From Design

Notes:
Based on Example 8.8 of the MTO Drainage Management Manual 1995-1997
Design Chart C5-10b from MTC Drainage Manual Volume 1 Chapter C

Existing Condition Flows

		24-hour Chicago Flow from PCSWMM			Municipal Drain Capacity
Catchment	Area	$\begin{aligned} & \text { 2-year } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & 5 \text {-year } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \\ & \hline \end{aligned}$	100 year $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\left(\mathrm{m}^{3} / \mathrm{s}\right)$
1000	96.4	5.00	7.24	14.22	0.559
1002	158.4	6.23	8.95	17.76	0.919
1005	51.6	4.41	6.32	12.26	0.299
1007	21.0	1.09	1.57	3.09	0.122
1010	38.4	2.47	3.52	6.77	0.223
1015	14.3	1.36	1.89	3.46	0.083
1020	92.9	1.26	1.74	3.29	0.539
1025	13.9	0.63	0.88	1.63	0.081
1027	56.5	3.97	5.68	11.32	0.328
1030	33.4	3.14	4.48	8.60	0.194
1035	105.2	1.44	2.00	3.80	0.610
1040	27.4	2.05	2.98	5.94	0.159
1045	26.7	0.39	0.55	1.07	0.155
1050	122.6	2.73	3.76	6.89	0.711
1055	32.0	0.45	0.62	1.19	0.185
1060	115.3	1.50	2.07	3.88	0.669
1065	29.0	1.19	1.65	3.02	0.168
1070	88.0	1.03	1.41	2.60	0.510
1072	53.6	3.41	4.92	9.55	0.311
1075	38.6	0.60	0.86	1.71	0.224
1080	279.4	5.14	7.17	13.28	1.621
1085	135.0	1.66	2.29	4.23	0.783
1090	24.8	0.37	0.52	1.02	0.144
1095	161.2	1.96	2.70	4.97	0.935
1100	53.8	0.66	0.91	1.69	0.312
1105	138.2	4.21	6.01	11.65	0.802
1110	59.5	0.81	1.13	2.14	0.345
1115	113.7	2.92	4.03	7.49	0.660
1120	142.0	1.96	2.72	5.18	0.824
1125	87.3	1.20	1.66	3.16	0.506
1130	226.5	2.69	3.71	6.82	1.314
1133	35.3	0.55	0.78	1.56	0.205
1135	24.4	0.35	0.49	0.94	0.142
1140	25.8	1.43	1.97	3.60	0.150
1145	161.9	3.02	4.21	7.78	0.939
1150	13.2	0.61	0.85	1.57	0.077
1155	110.5	1.43	1.98	3.69	0.641
1160	7.8	0.12	0.17	0.33	0.045
1165	188.4	2.40	3.31	6.16	1.093
1170	4.7	0.08	0.12	0.25	0.027
1175	145.0	3.11	4.30	7.87	0.841
1180	43.8	1.77	2.60	5.28	0.254
1185	131.5	4.11	5.87	11.34	0.762
1190	107.8	1.51	2.10	4.01	0.625
1195	147.8	1.98	2.74	5.16	0.857
1200	198.5	6.95	10.06	19.79	1.151
1205	59.6	2.38	3.50	7.11	0.346
1210	161.8	5.08	7.16	13.47	0.939
1215	127.9	4.46	6.24	11.60	0.742
1220	117.7	4.74	6.96	14.14	0.683
1225	40.5	4.89	6.85	12.71	0.235
total	4490.76				
average		2.33	3.30	6.31	0.511

Proposed Data from PC-SWMM

Catchment	Area (ha)	Municipal Drain Capacity ($\mathrm{m}^{3} / \mathrm{s}$)	$\begin{gathered} \text { Flow - } 2 \mathrm{yr} \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Flow - } 5 \text { yr } \\ \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$	$\begin{aligned} & \text { Fow - } 100 \\ & \mathrm{yr}\left(\mathrm{~m}^{2} / \mathrm{s}\right) \end{aligned}$	$\begin{gathered} \text { Flow - 2yr } \\ \text { (L/ha) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Flow- } \\ & 5 \mathrm{yr} \\ & (\mathrm{~L} / \mathrm{ha}) \end{aligned}$	$\left.\begin{array}{\|} \text { Flow }-100 \\ \text { yr (L/ha) } \end{array}\right)$	$\begin{aligned} & \text { Runoff - } \\ & \text { 2yr (ML) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Runoff - } \\ 5 \mathrm{yr} \text { (ML) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Runoff - } \\ 100 \mathrm{yr} \text { (ML) } \\ \hline \end{array}$	Runoff - 2yr (m ${ }^{3} / \mathrm{ha}$)	Runoff-5yr (m ${ }^{3} / \mathrm{ha}$)	$\begin{aligned} & \text { Runoff- } \\ & 10 \mathrm{R} \\ & 10 \mathrm{n} \\ & \left(\mathrm{~m}^{3} / \mathrm{ha)}\right. \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Max Vol - } \\ \text { 2yr (ML } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Max Vol - } \\ \text { 5yr (ML) } \end{array}$	Max Vol 100 yr (ML)	$\begin{array}{\|c\|} \hline \text { Max Vol - } \\ 2 \mathrm{yr}\left(\mathrm{~m}^{3} / \mathrm{ha}\right) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Max Vol - } \\ 5 y r\left(\mathrm{~m}^{3} / \mathrm{ha}\right) \\ \hline \end{array}$	$\begin{gathered} \text { Max Vol - } \\ 100 \mathrm{yr}\left(\mathrm{~m}^{3} / \mathrm{ha}\right) \end{gathered}$	Max. Pond Depth - 2yr (m)	Max. Pond Depth - $5 y r$ (m)	$\begin{array}{\|c\|} \hline \text { Max. Pond } \\ \text { Depth - 100yr } \\ (\mathrm{m}) \end{array}$
52020	66.13	0.384	0.226	0.286	0.409	3.4	4.3	6.2	28	37	64	420	559	962	20	27	49	302.1	410.8	739.5	0.73	0.97	1.65
52030	117.58	0.682	0.396	0.512	0.742	3.4	4.4	6.3	41	56	99	349	475	844	29	40	72	247.4	341.2	613.3	0.80	1.07	1.82
52035	81.42	0.472	0.274	0.348	0.498	3.4	4.3	6.1	33	44	77	403	540	940	23	32	58	287.7	393.5	716.0	0.74	0.99	1.70
52045	63.81	0.370	0.209	0.274	0.413	3.3	4.3	6.5	20	28	53	312	440	828	12	18	36	194.8	277.6	562.3	0.69	0.96	1.81
52050	97.34	0.565	0.310	0.410	0.615	3.2	4.2	6.3	32	44	82	326	456	845	21	29	56	211.7	297.3	579.0	0.71	0.98	1.78
52055	65.11	0.378	0.233	0.294	0.399	3.6	4.5	6.1	24	32	56	362	493	866	18	24	44	269.8	374.8	679.0	0.85	1.15	1.94
52060	112.73	0.654	0.331	0.441	0.667	2.9	3.9	5.9	40	54	98	352	482	870	26	36	67	232.7	316.5	592.9	0.67	0.89	1.58
S2065	116.33	0.675	0.326	0.417	0.603	2.8	3.6	5.2	51	67	114	439	578	984	36	49	89	313.6	420.1	769.0	0.67	0.88	1.53
S2075	117.69	0.683	0.320	0.426	0.668	2.7	3.6	5.7	37	52	97	314	439	823	24	33	63	203.1	276.3	535.0	0.69	0.92	1.67
52080	69.76	0.405	0.151	0.246	0.686	2.2	3.5	9.8	12	20	46	176	289	654	7	10	22	96.8	145.3	312.7	0.75	1.08	2.09
52085	100.9	0.585	0.189	0.294	0.532	1.9	2.9	5.3	26	38	75	258	375	746	17	24	46	171.7	233.2	456.4	0.71	0.95	1.73
52090	72.83	0.422	0.195	0.265	0.424	2.7	3.6	5.8	18	26	53	241	357	725	10	14	30	133.2	190.5	407.5	0.61	0.85	1.68
52095	117.98	0.684	0.308	0.410	0.618	2.6	3.5	5.2	36	50	95	305	426	802	24	33	65	200.0	277.3	549.7	0.68	0.92	1.71
52100	50.57	0.293	0.194	0.231	0.299	3.8	4.6	5.9	19	26	46	372	512	903	14	20	37	275.7	395.9	737.6	0.79	1.10	1.90
52105	60.91	0.353	0.198	0.254	0.371	3.3	4.2	6.1	20	28	52	335	465	855	13	19	38	212.5	305.9	623.7	0.68	0.96	1.81
52110	49.79	0.289	0.174	0.221	0.313	3.5	4.4	6.3	18	24	44	357	490	886	12	16	32	234.9	329.3	636.6	0.72	0.98	1.77
52115	113.58	0.659	0.289	0.418	0.673	2.5	3.7	5.9	29	42	84	258	373	739	17	23	48	151.3	205.7	420.2	0.61	0.81	1.56
52125	93.38	0.542	0.273	0.349	0.505	2.9	3.7	5.4	32	44	80	345	474	862	21	28	55	222.2	304.5	592.1	0.66	0.89	1.63
52130	80.55	0.467	0.242	0.307	0.426	3.0	3.8	5.3	37	48	80	453	593	997	26	36	64	328.9	443.2	794.3	0.66	0.88	1.50
52133	93.08	0.540	0.271	0.353	0.528	2.9	3.8	5.7	36	49	85	388	522	917	24	33	60	261.4	352.2	645.3	0.66	0.87	1.51
52135	22.82	0.132	0.087	0.108	0.151	3.8	4.7	6.6	8	11	20	351	485	879	5	7	15	224.7	325.2	640.7	0.70	0.98	1.76
52140	82.1	0.476	0.234	0.315	0.482	2.9	3.8	5.9	22	32	63	265	387	766	13	19	41	156.6	232.6	497.8	0.68	0.98	1.92
52155	77.27	0.448	0.238	0.303	0.436	3.1	3.9	5.6	26	36	66	338	469	860	17	24	47	219.4	308.5	610.3	0.70	0.97	1.79
52165	179.12	1.039	0.442	0.635	0.952	2.5	3.5	5.3	61	83	153	338	466	853	41	55	106	227.1	305.4	589.5	0.70	0.92	1.68
52175	47.3	0.274	0.149	0.184	0.254	3.2	3.9	5.4	22	29	47	471	614	994	19	26	42	411.8	544.1	884.5	0.99	1.27	1.95
52185	65.4	0.379	0.204	0.260	0.374	3.1	4.0	5.7	23	32	57	354	486	878	15	22	42	230.3	330.1	648.2	0.68	0.95	1.74
52190	84.96	0.493	0.087	0.200	0.377	1.0	2.4	4.4	30	41	74	350	481	872	25	32	58	299.1	380.4	677.5	0.89	1.11	1.86
52200	784.14	4.548	1.018	1.599	3.142	1.3	2.0	4.0	176	252	511	225	321	652	119	157	287	151.5	199.7	365.8	0.62	0.81	1.42
52210	58.24	0.338	0.040	0.085	0.205	0.7	1.5	3.5	23	31	54	402	527	925	23	27	44	391.8	470.1	754.0	0.98	1.16	1.77
52215	106.67	0.619	0.146	0.256	0.499	1.4	2.4	4.7	38	52	94	357	487	878	31	39	68	290.2	370.0	641.8	0.82	1.03	1.69
Total	3351.49								1058	1465	2712				723	979	1825						
Average		0.63	0.26	0.36	0.58	3	4	6	34	47	87	341	469	853	23	32	59	238	325	609	0.73	0.98	1.73

Town of Tecumseh Consolidated Official Plan Land Use Designations

1. Oldcastle Hamlet Settlement Area Expansion, as approved in County Official Plan
2. Proposed Business Park/Industrial.

Official Plan and Zoning By-law Amendments appealed to the OMB.

;River: Gouin				
- Reach: Gouin ; Transect: 0.75				
${ }^{\text {jo. }} 75$	178.4	3.6	0	5
- River: Lachance				
Jo. 8	178.1	3.6	0	5
;River: Lachance				
;Reach: Lachance				
Ј0.9	178.6	3.6	0	5
${ }^{1}$	185			
; Reach: watson to Desj				
iTransect: 10			0	5
;River: Watson Dra	178.819	5	0	5
each: Watson Drain				
	180.729	2.1	0	5
;Reach: Watson Drain				
; Transect: ${ }^{\text {J103 }}$	181.937	2.7	0	5
				5
iRiver: Watson drain				
${ }^{\text {J105 }}$	182.202	2.1	0	5
;Reach: Watson Drain				
${ }_{\text {j }}^{\text {Transect: }}$ (106				
${ }_{\text {iR }}^{\text {TRiver }}$: Watson Dra	182.812	1.739	0	5
;River: Watson Drain				
;Reach: Wat son Dr				
${ }^{1} 107$	184.192	2.055	0	5
; Upstream end of watson Drain underpass culve				
${ }_{\text {IT1 }}$ information from				
;River: Little River				
${ }_{J 13}$	182.19	5.	。	5

```
# Reach: Baseline to wat,
V14
Transect: 15 to Wats
M15
\Mransect:16 180.509 4.29
M,
\18
i,River: Little 
#,Reach: Little River
M19
RNver: Little River
.Transect: 2 Lesjardeins and Iittle River
```



```
# RRach: Littte
MTransect:20 lllll
```


; River: ; Reach: CJ70	Hurley Drain Hurley Drain	J69	40	0.045	186.2	186.1	0	0
; River:	Hurley Drain							
${ }^{\text {i Reach: }}$ CJ71	Hurley Drain	570	50	0.045	186.3	186.2	0	0
;River:	Hurley Drain							
${ }_{\text {a }}$ iReach:	Hurley Drain ${ }_{\text {J72 }}$	371	55	0.045	186.6	186.3	0	0
;River:	Hurley Drain							
	Hurley Drain	J72	20	0.045	186.6	186.6	0	0
;River:	Hurley Drain Hurley Drain							
${ }_{\text {c }}$	${ }^{\text {Hurley }}$ Drain	J73	650	0.045	187	186.6	0	0
;River:	Hurley Drain							
iReach:	Hurley Drain	J74	30	0.045	187.7	187	0	0
; River:	Hurley Drain							
	Hurley Drain	J75	30	0.045	187.7	187.7	0	0
; River:	Hurley Drain							
(iReach:	Hurley Drain	${ }^{376}$	10		187.6	187.7	0	0
;River:	Washbrooke							
(iReach:	Washbrooke				186.5	186.5	0	0
; River:	Washbrooke		55	0.045			0	
(iReach:	Washbrooke	J80	90	0.045	186.5	186.5	0	0
;River:	Washbrooke							
		J81	30	0.045	186.5	186.5	0	0
; River:	Washbrooke ${ }^{\text {d }}$							
; Reach:	Washbrooke	J84	30	0.045	186.6	. 5	0	0
;River:								
(iReach:	Washbrooke ${ }_{\text {J86 }}$	J85	80	0.045	187	186.6	0	0
;River:	Washbrooke							
(iReach:	Washbrooke							
; River:	Washbrooke ${ }^{\text {J8 }}$	${ }^{8} 6$	90	0.045	186.79	187	0	0
; Reach:	Washbrooke							
${ }_{\text {CJ88 }}$ Civer	${ }^{\text {J88 }}$	J87	170	0.045	187.546	186.79	0	0

River: Lachance
;Reach: Lachance

; Reach: Lachano								
	Festardetins drain sectio	N ${ }_{\text {¢ }}$			ons of 178.6	$\underset{178.1}{\text { drain }} 1$	0	${ }_{0}^{\text {m bottom, }}$ 2:1 side slope:
; Reach:	Desjardeins							
CJ4	${ }^{\text {J4 }}$	J5160	35	0.045	178.1	178	0	0
;River: Desjardeins								
CJ4. 5	J4. 5	${ }^{\text {J4 }}$	500	0.045	178.7	178.2	0	0
	Hayes Drain	J5045	120	0.045	184.55	184.25	0	0
	Length, Manning's n from	SWMHYMO J53	1720	0.045	186.831	184.55	0	0
; River: Hurley Drain								
${ }_{\text {CJiviver }}^{\text {CJ }}$	Hurley Drain ${ }^{\text {J622 }}$	J5060	55	0.045	185.013	184.846	0	0
; Reach: Hurley Drain								
	${ }^{563}$	J62	110	045	185.1	185.0	0	0
;Reach: Hurley Drain								
CJ64	${ }^{\text {J64 }}$	${ }^{6} 3$	80	0.045	185.1	185.1	0	0
;River: Hurley Drain								
;River:; Rureach: Hurley DrainHrain								
; Reach: Hurley Drain								
								0
;River:	Hurley Drain							
;Reach:	Hurley Drain							

CJ84	irregular	79	0	0	0
${ }_{\text {CJJ85 }}$	$\underset{\text { ITREEGULAR }}{\text { IRresurar }}$	80	0	0	0
${ }_{\text {CJJ86 }}^{\text {CJ87 }}$	${ }_{\text {IR }}^{\text {IRrgeular }}$	${ }^{86}$	0	\bigcirc	0
${ }_{\substack{\text { CJ88 } \\ \text { CJ8 }}}^{\text {ces }}$	${ }_{\text {I }}^{\text {Irregregular }}$	${ }_{88}^{87}$	\bigcirc	\bigcirc	:
CJ89	${ }_{\text {ir }}^{\text {irgegular }}$	89	\bigcirc	\bigcirc	0
	${ }^{\text {IfRrgeular }}$	89	0	\bigcirc	0
${ }_{\text {OR1180-1 }}^{\text {OR1205-1 }}$	$\underset{\text { CIRCULAR }}{\text { CTRCUIAR }}$	1	0	\bigcirc	\bigcirc

; High-chord transect for bridge 0.35 (River: Gouin; Reach: Gouin).
$;$; COPY OF DESTARDEINS DRAIN SECTION 44
$\begin{array}{lll}\text {; COPY OF } \\ \text { NC } \\ 0.1 & \text { DESJARDEINS } \\ 0.1 & 0.045\end{array}$
$\begin{array}{lll}\mathrm{X} 1 & 0.35 . \mathrm{HC} \\ \text { GR } & 181.505 & 2605\end{array}$
; copy of desuardeins dratin sectid
 ; Copy of desjaddeins drain section 4
NC 0.1
0.045

 ;COPY OF DESJARDETNS DRATN SECTION 4 - based on 1997 SWM report, dimensions of the drain are accurate; 3 m bottom, $2: 1$ side slope

$\begin{array}{cl}\mathrm{GR} & 180.062 \\ \mathrm{GR} & 183.3\end{array}$	$\begin{aligned} & 3004.032 \\ & 3240 \end{aligned}$	$\begin{aligned} & 180.699 \\ & 183.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3006.35 \\ & 3270 \end{aligned}$	$\begin{gathered} 5683.031 \\ 183.7 \end{gathered}$	$\begin{aligned} & 3009.792 \\ & 3350 \end{aligned}$	$\begin{aligned} & 183.047 \\ & \hline 184.37 \end{aligned}$ 184.3	$\begin{aligned} & 3015.242 \\ & 4000 \end{aligned}$	183.3	3040		
	transect	for bridge 14.5 (River: Little River; Reach:0.045					Baseline to Wats).				
$\times 114.5$			2994.2	3009.7920 .0		0.0			0		
GR 184.2	2250										
GR 183.3											
GR 183.203	${ }^{2994.2}$	183.073	2994.597								
GR 183	3100	183.5	3105	183.8	${ }_{3180}^{3015.242}$	184.1	3370	184.4	3900		
GR 184.208	3900	184.3	4000								
nc 0.1	0.1	${ }_{19} 0.045$	2994	3015.242					0		
${ }_{\text {X1 }} 15$		19				0.0	262	${ }^{0}$			
GR 184.2	${ }_{2830}^{2250}$		${ }_{2890}^{2350}$	${ }_{183.3}^{184 .}$	${ }_{2}^{2480}$	183. 183.	${ }_{2620}^{2984}$	183.3 180.87	${ }_{3001.339}^{2675}$		
GR 180.062	3004.032		3006.	183.031	3009.	183.04	3015.	183.3			
GR 183.3	3240	18		183.7	3350	184.3					
nc 0.1	0.1	${ }_{18}^{0.045}$	2993	3007.155	0.0	$\begin{aligned} & 0.0 \\ & 183.6 \\ & 180.509 \\ & 183.8 \end{aligned}$	$\begin{aligned} & 0 \\ & \begin{array}{l} 2825 \\ 3001.337 \\ 3075 \end{array} \end{aligned}$	$\begin{aligned} & 0 \\ & \begin{array}{l} 183.5 \\ \hline 180.512 \\ 184 \end{array} \end{aligned}$	$\begin{aligned} & 0 \\ & \begin{array}{c} 2925 \\ 3020.636 \\ 3130 \end{array} \\ & \hline 130 \end{aligned}$		
${ }_{\text {X1 }} 116$											
GR GR 183.8 183.5	2380		2575	${ }_{181.681}^{183.6}$	${ }_{2997}^{2720} .937$						
GR 183.126	3007.155	183.5	3010	183.6	3025						
GR 184	3210	184.8	3260	184.8	3450						
gh-cho	transect	${ }_{\substack{\text { for bridge } \\ 0.045}}^{16.5}$		River: Little River		; Reach:	Baseline	to Wats)	$\begin{aligned} & 0 \\ & 303.1 \\ & 30700 \end{aligned}$		
${ }_{1}^{0.1}$											
GR 186.2	1000	185.2	2000	$\begin{aligned} & 185.2 \\ & 184.5 \end{aligned}$	$\begin{aligned} & 0.0 \\ & \begin{array}{l} 3300 \\ 3170 \end{array} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 184.6 \\ & 184.6 \end{aligned}$	$\begin{gathered} 2710 \\ 32710 \end{gathered}$	$\begin{gathered} 0 \\ 184.6 \\ 184.6 \end{gathered}$			
GR 184	30	184.6	3050								
GR 185	4000	186	5000								
NC 0.1	0.1	${ }_{16}^{0.045}$	$\begin{gathered} 2993 \\ 2300 \\ 8 \\ 8903 \\ 8170 \end{gathered}$	3050 180.91 184.1	$\begin{aligned} & 0.0 \\ & \begin{array}{l} 2550 \\ 2997.879 \\ 3225 \end{array} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 184.2 \\ & 180.961 \\ & 184.3 \end{aligned}$	$\begin{aligned} & 0 \\ & 2710 \\ & \begin{array}{l} 2999.52 \\ 3425 \end{array} \end{aligned}$	${ }_{184}^{0}$ 180.944 184.6	$\begin{aligned} & 0 \\ & \begin{array}{c} 2880 \\ 3001.733 \\ 3700 \end{array} \end{aligned}$		
X1 GR 185 185											
GR 183.7		183.938									
GR 183.6	$\begin{aligned} & 3050 \\ & 4000 \end{aligned}$	183.9									
		$\begin{aligned} & 0.045 \\ & 7^{0.045} \\ & 185.2 \\ & 185.2 \end{aligned}$	$\begin{gathered} 2999 \\ 2999 \\ 3009.5 \end{gathered}$	3009.5184.3	${ }_{3000}^{0.0}$	$\begin{aligned} & 0.0 \\ & 182.4 \end{aligned}$	$\begin{gathered} 0 \\ 3004 \end{gathered}$	$\begin{gathered} 0 \\ 181.6 \end{gathered}$	${ }_{3006.1}^{0}$		
R 18	3008										

$\begin{aligned} & \text { iHigh-chord transect for bridge } \\ & \text { iThis } \\ & \text { in } \\ & \text { NC } 0.1\end{aligned}$ a REPERATED Section.
in
0.1

i This is a	Repeated								
$\times 135183$.1	23	2992.7	3007.5	0.0	0.0	0	0	0
GR 183	2500	180.6	2630	180.5	2830	180	2900	179.4	2950
GR 179.9	2983	177.9	2989.2	177.9	2989.3	176.8	2992.7	177.4	2992.8
${ }_{\text {GR }} \mathrm{Cl} 176.8$	2994.6	176.8	3300	176.8	3007.4	176.8	3007.5	179.3	3013.9 3095
GR 179.3 GR 180.5	3014 315	179.9	3015.3	179.5	3018	179.5	3065	180	3085
GR 180.5	3145	180.6	3170	180.7	3275				
Nc 0.1	0.1	0.045							
X1 35404		${ }^{11}$	${ }_{2}^{2991}$	3009	0.0	0.0	${ }^{0}$	${ }^{0}$	
GR 181.9	2640 2996	180.4 176.8	2665 3004	180.4 179.4	2800 3009	180.4 179.9	${ }_{3025}^{2920}$	179.9 180.4	
GR 176.8 GR 180.9	2996 3370	176.8	30	179.4	3009	179.9	35	180.4	3175
nc 0.1	0.1	0.045							
			2994	3007.976					
${ }^{\text {GR }} 186.5$	2893	${ }^{186.3}$	${ }^{2993}$	${ }^{185.85}$	2994	184.35	2996.702 304.351	184.19	2997.51
${ }_{\text {GR }}^{\text {GR }} 1886.3$	${ }_{3008}^{2998.331}$	${ }_{1}^{186.5}$	${ }_{3108}^{3000.603}$						
nc 0.1	0.1	0.045							
x136000		11	2991	3009	0.0	0.0	0	0	
GR 182	2640	180.5		180	280	180			
GR 176.9	2996	176.9	3004	179.5	3009	180	3035	180.5	3175
GR 181	3370								

$\begin{aligned} & \text { GR } 178.1 \\ & \text { GR } 177.2 \\ & \text { GR } 180.5 \end{aligned}$	$\begin{aligned} & 2993 \\ & 306.1 \\ & 3060 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 178.1 \\ 177.2 \\ 181 \end{array} \end{aligned}$	$\begin{aligned} & 2993.1 \\ & 3906.2 \\ & 3220 \end{aligned}$	$\begin{aligned} & 177.2 \\ & 178 \\ & 181 \end{aligned}$	$\begin{aligned} & 2993.9 \\ & 3007 \\ & 3300 \end{aligned}$	$\begin{aligned} & 177.2 \\ & 178 \\ & 181.5 \end{aligned}$	$\begin{aligned} & 2999 \\ & 3007.1 \\ & 340 \end{aligned}$	$\begin{aligned} & 177.2 \\ & 179.9 \end{aligned}$	3000 3009
; High--hord transect for bridge 40573.5 (River: Little River; Reach: Gouin to DS end).									
is is		section.							
$\times 140573.5$	нс	12	0	0	0.0	0.0	0		
GR 182.5	2730	182.6	2750	183	2920	183	2993	183.8	2993
${ }_{\text {GR }}^{\text {GR } 183}$	2994 3009	183 181		183.8		183.8			
; This is a Repeated section. $\begin{array}{lll}\text { NC } 0.1 & 0.1 & 0.045\end{array}$									
$\times 140824$			2993.	3006.	0.0	0.0	0		
182.5	2730	180	2750	180	282	18	2920	179	
178	2993	178.	2993.	177.2	2993	177		177	
GR 177	3006	177.2	${ }_{3006 .}$	178	3007	178	3007	179	
GR 180.5	3060	181	3220	181	330				
nc 0.1	0.1	0.045							
			2994	3001.712	0.0				
$\mathrm{GR}_{\text {GR }} 188.18$	${ }_{2}^{2893}$	186.9	${ }_{2}^{2993}$	186.575	${ }_{3094}$	185.38	2996 3102	184.838	
GR 185.18	2999.93	186.677	3001.7	86.9	3002	187			
nc 0.1	0.1	0.045							
${ }_{\text {X1 }}^{\text {C1 }} 181106$		${ }_{181.5}^{16}$	${ }_{2}^{2950.3}$	${ }^{2965.7}$		${ }_{181.3}^{0.0}$		${ }_{179} 17$	
GR 177	2954.36	177.3	2961.64		2965.7				3045.5
		181.1	${ }^{3203}$	181.2	3308	181.5	3413	181.8	
0.	0.1								
GR 187.	2893	186.9	2993	186.75	2994	185.322	2995.817	184.846	2997.
GR 185.1	2999	186.801	3002.	186.9	3003	187.			
wc 0.1	0.1	0.045							
$\times 142000$		16	2989						
${ }^{\text {GR }} 183$	2860	${ }^{181.5}$	2880	180.7	295	181	2983	179	
GR 177.3	2994.8	177.3		179.4					
${ }_{\text {GR }}^{\text {GR }} 182.181 .3$	3220 4700	181.1	3350	181.2	3500	181.5	3650	181.8	4000
43	${ }^{8}$	8.	2994	3001.12		0.0	0	0	

GR 187.2 GR 186.865	$\begin{aligned} & 2893 \\ & 3001.123 \end{aligned}$	$\begin{array}{r} 1877 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 2993 \\ & 3002 \end{aligned}$	$\begin{aligned} & 186.941 \\ & 187.2 \end{aligned}$	$\begin{aligned} & 2994 \\ & 3102 \end{aligned}$	84.889	2995.	185.528	998
nc 0.1	0.1	0.045							
X1 44			${ }_{2}^{2994}$	${ }^{3003.375}$	0.0	${ }^{0.0}$	${ }_{20}{ }^{\circ}$	0	\bigcirc
$\mathrm{GR}_{\text {GR }} 1888.2$	${ }_{2999.884}^{2893}$	187.8 187.8	${ }_{3003.375}^{2993}$	${ }^{187.6} 188$	2994 3103	18	2997.03	185	998.
HLocation of TwinNc 0.10.10.1									
${ }_{\text {GR }} 183$	26	${ }_{182}$	${ }_{2680}^{2989}$	${ }_{181} 18$	2790	180.5	2820	180	2840
1177	${ }_{3006}^{2800}$				${ }_{3010}^{2989}$.		${ }_{3060}^{2991.5}$	177	${ }_{3150}^{2993}$
GR 181.2	${ }_{3250} 300$	181.2	${ }_{3350} 308$.	181.4	3600.	181.7	4000	${ }_{182.2}^{181}$	4600
(loction of Twin oaks Drive Structure									
$\times 14432$		20	2989.8	3010.4	0.0	0.0	0	0	
GR 183	2660	182	2680	181 180	${ }_{2989}^{2790}$	${ }_{178}^{180 .}$	2820	180	${ }_{2940}^{2893}$
GR 177.	3006.2	178.9	3008.5	180.		178.	2991.	181	
GR 181.2	3250	181.2	3350	181.4	3600	181.7	4000	182.2	4600
GR 183.2		${ }^{20}$	2680	181.2	2790	180.7	2820	180	284
GR 181.2	2860	181.2	2950	180.2	2989.8	179.1	2991.5	177	2993
GR 177.7	${ }_{3}^{3006.2}$	179.1		${ }_{181.6}^{180.3}$	3010.4 3600	181.2		181.2	
GR 181.4		181.4	3350	181.6		181.9	4000	182.4	
nc 0.1	0.1	0.045							
X1 GR 187				2999.9	0.0	0.0			
GR ${ }_{\text {GR 187.5 }}$	${ }_{3000}^{2894}$	187.7	${ }_{3100}^{2994}$	185.8					
$\times 145100$		20	2989.8	3010.4	0.0	0.0			
GR 183.4	2660	182.4	2680	181.4	2790	180.9	2820	180	
GR 181.4	2860	181.4	2950	180.4	2989.	179.3	2991	177	2993.
GR 177.9	3006.2	179.3	3008.5	180.5	3010.	181.4	3060	181	3150
GR 181.6	3250	181.6	3350	181.8	3600	182.1	4000	182.6	4600

NC	0.1	20		3010.4	0.0	0.0			
GR 183	2200	${ }_{182}$	${ }_{2250}^{2989}$	${ }_{181} 3010.4$	2300	${ }_{181}$	2825	${ }_{181}$	2840
GR 181	2860	181	50	180	2989.8	178.9	2991.5	178.2	2993.6
GR 178	3006	178.9	8.5	180.1	3010.4	181		181	3150
GR 181.2	3250	181.2	3350	181.4	3600	181.	4000	182.	4600
nc 0.1	0.1	0.0							
$\times 146$			${ }_{2}^{2994}$	3001.45	0.0	0.0		${ }^{0}$	
GR 187.8	3001.45	${ }_{188.1}^{188.1}$	${ }_{3008.62}^{2948}$	186	${ }_{3109}^{2996006}$		2996.766		
${ }^{\text {nc }} 0.1$	0.1	0.045							
¢ ${ }_{\text {C1 }} 4848$		${ }_{181}^{18}$	${ }_{2250}^{2995}$	${ }^{3005.7} 181$					
GR 181	2992	${ }_{181}^{181}$	2992.1	178.9	2995	178.9	2995.1	178.4	3000
178	3005	178.4	3005.7	181	3008		3008.1		3025
GR 181	3200	181	3600	182	425				
$\begin{array}{lll}\text { Nc } & 0.1 \\ \text { X1 } & 46203\end{array}$		0.045							
184		18	2250	${ }_{181}$	2500	${ }^{181}$	2700	${ }_{181}^{01}$	
GR 181	2992	181	2992.1	178.9	2995	178.9	2995.1	178.4	3000
GR 178.	3005.6	178.4	3005.	181	3008	181	3008.1	181	3025
GR 181	3200	18	360	182	425				
nc 0.1	0.1	0.045							
X146304		18	2992.1	3008	0.0	0.0			
${ }_{\text {GR }}^{\text {GR }} 181818$	${ }_{2}^{2240}$	${ }_{181}^{181}$	${ }_{29250}^{2250}$	181 178.9	2500 2995	181 188.9	${ }_{2995}^{2700}$	${ }_{1781}^{181}$	50
GR 178	30	178.	3005.7	181	3008				3025
GR 181	3200	181	3600	182	4250				
; Upstream	ttl	ver an	ine	junctio					
	0.1	. 045							
GR 184.79	2894	${ }_{184.59}$	${ }_{2}^{2994}$	${ }_{\text {3011.01 }}^{384}$	0.0997 .573	${ }_{184.23}^{0.0}$	2998.34	${ }_{182.32}$	30
GR 181.23	3003.576	181.24	3004.4		3005.132	182.32	3006.611	184.39	3011.01
GR 184.59	3011.5	184.79	3111						
710	0.1	. 045							
			2766.47	2771.6					
GR 6 GR 180.98	${ }_{2}^{22406.4}$	180.9	${ }_{2245}^{2247}$	180.9	${ }_{2768} 24$	180.9	${ }_{2762} 27$	${ }_{188.9}^{180.9}$	${ }_{2}^{2667}$

GR 178. GR 180.	$\begin{aligned} & 2775.92 \\ & 2912 \end{aligned}$	$\begin{aligned} & 178.3 \\ & 180.9 \end{aligned}$	$\begin{aligned} & 2775.99 \\ & 3192 \end{aligned}$	$\begin{aligned} & 180.9 \\ & 181.9 \end{aligned}$	${ }_{3647}^{2777 \cdot 6}$	180.9	. 67	180.9	2789.5
wc 0.1	0.1	0.045							
$\times 148$			2994	3008.902	0.0	0.0	0	11	
184.75	2894	184.55	2994	184.4	2995.178	182.28	2999.297	181.47	3001.13
$\begin{aligned} & G \mathrm{GR} \\ & \mathrm{GR} 184.43 \\ & \mathrm{GR} 184.75 \end{aligned}$	$\begin{aligned} & 301.905 \\ & 3109 \end{aligned}$	5181.57	3002.728	8 184.31	3006.35	184.41	3008.902	4.55	
0.1	0.1	0.045							
48500		14	2992	3008	0.0	0.0	2010	0	0
184.9	2300	181.4	${ }^{2310}$	181.4	${ }^{2650}$	181.4	2810	181.2	50
GR 1880.9 GR 180.9	2980 3035	${ }_{181.1}^{180.7}$	${ }_{3150}^{2992}$	178.2 181.5	${ }_{3500}^{2997}$	${ }_{188.2}^{178 .}$	3003 4000	180	
${ }_{49}^{0.1}$	0.1	0.045							
185.26	2894	185.06	2994	184.94	${ }_{2997.328}$	184.76	2997.913	181.84	${ }^{0} 004.357$
$\begin{array}{ll} \mathrm{GR} & 181.69 \\ \mathrm{GR} & 185.26 \end{array}$	$\begin{aligned} & 3004.762 \\ & \mathbf{3} 117 \end{aligned}$	281.81	3005.941	1184.42	3008.955			185.06	
vc 0.1	0.1	0.045							
		16	2991	3009	0.0				
184	22	18	2300	181.5	2525	181.5		181.5	
181.3	2850		2925		2991	178.2	2996.7	178.2	3003.3
	3009	181.2	3075	181.4	3140	181.5	3250	181.6	3450
182	4000								
vc 0.1	0.1	0.045							
		20	2952	2971.34	0.0	0.0		0	
	2280 2850	${ }_{182}^{182}$	2290 2950 295	${ }_{181.2}^{181.2}$	${ }_{295}^{2300}$	181.1		181	
181	${ }_{2}^{2850} 0$	181	2950	${ }_{181}^{181.3}$	${ }_{3050}^{2952}$	180.1	${ }_{\substack{2959.032 \\ 3150}}$		2961.8
180.1 181.6	${ }_{3450}^{2964.914}$	181.2 181.9	${ }_{3750}^{2971.34}$	181 182	3050 4000	181.1 182.4	3150 4650	181.3 182.9	3250 5500
$\begin{aligned} & 0.1 \\ & 50 \end{aligned}$	0.1	${ }_{10}{ }_{10} .045$	\%						
GR 185.5	2894	185.3	2994	185.2	2997.059	184.9	2998.084	182.8	3003.
GR 182.3	3004.059	181.7	3007.922	184.8	3009.343	185.3	3010	185.5	
is is	EATED	section.							
50350			2991	3009					
184	2295	181.5	2300	181.5	2525	181.5	2700	181.5	2800
${ }_{\text {GR }}^{\text {GR }} 1881.3$	2850	${ }^{181.1}$	${ }_{3}^{2925}$	181	2991	178.2	2996.7	178.2	3003.3
									3450

; High-chord transect for bridge 58.76 (River: 7th Concession D; Reach: 7th Concession).
;CORIED SECTION FROM SEC 58

nc 0.1	0.1	0.045							
		187.4	$\begin{gathered} 2994 \\ 2994 \end{gathered}$	$\begin{gathered} 3001.572 \\ 185.3 \end{gathered}$	${ }^{0.0}{ }_{295.71}$	0.0 185	${ }_{2996.6}^{09}$	$\stackrel{0}{185.2}$	${ }_{2997.64}$
GR 187.2	3001.572		3002						
NC 0.1	0.1	0.045							
X1 ${ }_{\text {GR }} 56$ G8. 18.7			${ }_{2}^{2994}$	${ }_{\text {3001. }}^{1875}$	${ }_{2994}$	${ }_{186.555}^{0.0}$		186.09	
GR 186.66	2999.644	187.999	${ }_{3001.675}$	181.66	3092	${ }_{188}^{186.555}$	3102		
NC 0.1	0.1	0.045							
			${ }^{2994}$	3008.541 187	${ }^{0.0} 9$	${ }_{10}^{0.0} 08$			$\stackrel{0}{0}$
GR 187	3001.32	187.911	${ }_{3008.591}^{2993}$	188.8 188.7	${ }_{3010}^{2994}$	${ }_{188.9}$	${ }_{3110}^{2998.621}$		
nc 0.	0.1	. 045							
${ }^{\times 1} 58$			2994	3008.551	0.0				
$\mathrm{CRR}_{6 \mathrm{CR}} 188.95$	2594	188.555	2994	187.7	2998.05	187.701	2999.828	187.8	3002.522
$\begin{array}{ccc}\text {; COPIED } \\ \text { NC } \\ \text { NECTION } & 0.1 & 0.1 \\ 0.1 & 0.045\end{array}$									
X1 58.5			${ }_{2}^{2994}$	3008.551 189	0.0	0.0			
${ }_{\text {GR }} 189.5$	${ }_{3}^{2894}$	189.3	2993	189.055	2994	188.2	2998.05	188.201	2999.82
GR 188.3	3002.522	189.065	3008.551	189.3	3009	189.5	3109		
- ${ }_{\text {GR }}$ 194.1		193.905	${ }_{2}^{2994}$	${ }^{30089} 1851$	${ }_{2998.05}$	${ }_{193.051}^{0.0}$	${ }_{2999.828}$	${ }_{193.15}^{0}$	${ }_{3002.522}$
GR 193.915	3008.551	194.11	3108						
; High-chord transect for bridge 58.74 (River: 7 th Concession D; Reach:COPIED SECTION									
$\times 158.74$ HC	.	3.04				0.0	0	0	0
GR 194.45	2594	194.4	3347.3	194.46	3408				
$\begin{array}{ccc}\text {; Copied } \\ \text { NC } & 0.1 & \text { SECtion } \\ 0.1 & \text { FROM SEC } 58 \\ 0.045\end{array}$									
X1 58.745			2994	3008.551	. 0	0.0	0		
${ }_{\text {GR }}^{\text {GR }} 194.45$	2594	194	2994	189	2998.05	193.201	2999.828		3002.52
DECTIoN from									

nc 0.1	0.1	0.045					$\begin{aligned} & 0 \\ & \begin{array}{l} 0500 \\ 3000.177 \\ 31000 \\ 3900 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 181.7 \\ & 179.8 \\ & 182 \end{aligned}$	$\begin{gathered} 0 \\ \begin{array}{c} 2700 \\ 3007.135 \\ 3105 \end{array} \end{gathered}$	
		${ }_{182}^{19}$	$\begin{array}{r}2994 \\ 203 \\ \hline\end{array}$	${ }^{3015.8}$	0.0	${ }^{0.0}$				
GR 181.9	2850	181.6	2950	181.6	2994	179.6				
GR 179.8	3009.548		3015.8	181.5	3050	181				
GR 182.3	3180	182.6	3370	182.7	3600	182.9				
nc 0.1	0.1	0.045					$\begin{gathered} 0 \\ \begin{array}{c} 2996.175 \\ 3101 \\ \hline 186.5 \end{array}{ }^{0} 0 \end{gathered}$		$\begin{aligned} & 0 \\ & 2997.781 \end{aligned}$	
$\times 180$			2994	3000.4	0.0	0.0				
	2893			188						
${ }^{\text {GR }}$	2998.638	188.1	3000	188.	3001	189				
NC 0.	0.1						$\stackrel{0}{2996.891}{ }^{\text {187.6 }}$		${ }_{2997.571}$	
$\times 181$			2994	2999.	0.	0.0				
GR 188.9	2594		2994	187	2996.045	187				
GR 188.	2999.293	188	3399							
NC 0.1	0.	. 045					${ }_{2995.925}^{0} \quad \stackrel{0}{187.6}$		${ }_{2996.651}$	
${ }^{\text {X1 }}$			2994	998.552		0.0				
GR 188										
GR 188	2998.552									
NC 0.1	0.1	. 045							${ }_{2998.696}$	
${ }_{\text {C1 }} \mathrm{X1} 188.9$		188.5	299494	${ }^{30001.561} 18.6$	${ }^{0} 2994.908$	0.0 187.1	$\stackrel{0}{2997.794}$	${ }_{187.6}$		
GR 188.5	3001.561	188.9	3401							
NC 0.1	0.1	. 045					2994.0343100310		${ }_{2994.987}$	
			2994	2999	. 0	0.0				
GR 189.5	2893	. 2	2993	188.71						
GR 188.45	2996.398	188.71	2999	189.2	3000	189.5				
Nc 0.1	0.1	. 045					$\begin{aligned} & 0 \\ & \begin{array}{c} 094.583 \\ 2997.54 .525 \\ 299746 \\ 18.58 .35 \end{array} \end{aligned}$		$\begin{aligned} & 0 \\ & 2995.032 \\ & 297967 \end{aligned}$	
$\times 187$			2994	2997	0.0	0.0				
GR 189.3	2893	相	2993			188.366				
GR 187.4	2995.	186.791	299	11	299	88.3				
GR 189.										
Nc 0.1	0.1	0.045					$\begin{gathered} 0995.171 \\ 187.546 \\ \hline \end{gathered}$		${ }_{2996.074}$	
${ }_{\text {K1 }} 1888$			${ }_{2}^{2994}$	${ }^{2998.364}$						
GR 187.711	2996.87	535	2993	18988	${ }_{2999}$	187.				
	0.1									
	2893		${ }_{2993}$	${ }^{3000.356}$	2994	187	\bigcirc	7.555	2996	

	189.6 184.6	$\underbrace{}_{\substack{303.1 \\ 3425}}$	188.5 184.6	${ }_{3}^{3006}$	${ }_{189}^{189}$	$\begin{gathered} 3050 \\ 4000 \\ 400 \end{gathered}$	184.5	3170
		${ }^{0.0}$	${ }^{0.0} 80$	${ }^{0.0}$	${ }_{101}^{0.0}$	${ }_{160} 0$	0.0	0.0
	$\begin{aligned} & { }^{0.045} \\ & { }_{100}^{0} \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	${ }_{\text {106. }}^{90.5}$	${ }^{0.0} 102.5$	${ }_{98}^{0.0} 9$	0.0 1004	${ }_{10}^{0.0}$	${ }_{1006.5}^{0.0}$
		$\begin{aligned} & 3.5 \\ & \hline 5.5 \\ & \hline 4.5 \\ & \hline 4.5 \\ & \hline 6.5 \end{aligned}$		$\begin{aligned} & \text { ation o+1 } \\ & 0.0 \\ & 0.0 .5 \\ & \text { an.5.5 } \\ & 49.5 \end{aligned}$			$\begin{gathered} 178,2 \\ 177 \\ 180.8 \\ 180 \end{gathered}$	$\begin{aligned} & 02.5 \\ & \text { ant.5 } \\ & 61.5 \end{aligned}$
		$\begin{aligned} & \text { Eono } 0 . \\ & \begin{array}{c} 43.5 \\ 39 \\ 37 \\ 97 \\ 92 \end{array} \end{aligned}$	$\begin{gathered} { }^{4578.5} \\ \substack{177 \\ 1778.5 \\ 178} \end{gathered}$	$\begin{aligned} & 0.0 \\ & .{ }_{47}^{47.5} \\ & 58.5 \end{aligned}$	$\begin{aligned} & 0.0 \\ & \text { a.8.5 } \\ & 177.5 \end{aligned}$	$\begin{aligned} & 29 \\ & 49 \\ & 63 \\ & 63 \end{aligned}$		
		$\begin{aligned} & 32 \\ & 29 \\ & 49.5 \\ & 464.5 \\ & 66 \end{aligned}$	$\begin{aligned} & 33.5 .9 \\ & .1779 .9 \\ & 179 \cdot 6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.0 \\ & { }^{0.0} \\ & 32 \\ & 47 \end{aligned}$	$\begin{gathered} 0.0 .0 \\ 179 \\ 1797 \\ 191 \\ 181 \end{gathered}$			$\begin{aligned} & 0.51 .5 \\ & \text { and.5 } \\ & 555 \end{aligned}$

100
10yr

	(2) M M

1110 1115 1120 1120 11200 11200 1120 1120 1120 1125 1125 1125 1125 1125 1125 11255 11255 1125 1125 1125 1130					
			1175 1175 1175 1175 1180 1180 1180 1180 1180 1180 1185 1190 1195 1195 1195 1195 1195 1195		

Upper Little River Model.
NoTe: The summary statistics displayed in this report are based on results found at every computat ional time step,

FIow Units ..

Rainfal1/Runoff
Rainfarle.
Snownedt
Grumnduater
Groundwater
Flow Routing
Plow Rout ing
Pondi ing Allowed
Water Qual ity
Wander Quality
nfiltratit.........
ne

Report rime step $\ldots \ldots \ldots$ oo: 00:05:00
vet Time step
Dry Time step $\ldots \ldots \ldots \ldots, \quad$ 00:05:00
Routing Time step $\ldots \ldots \ldots, ~ 30: 00$ sed
arring 04: minimum elevation drop used for conduit warning 04: mininimum elevation drop used for conduit c10 warning 04: minimum elevation drop used for conduit C11 warning 04: minimum elevation drop used for conduit c12 warning 04: minimum elevation drop used for Conduit c13 WARNING 03: negative offset ignored for Link C1

WARNING 04: minimum elevation drop used for Conduit C14 WARNING 04: minimum elevation drop used for Conduit Cl WARNING 04: minimum elevation drop used for Conduit C17 WARNING 04: minimum elevation drop used for conduit c1e warning 04: minimum elevation drop used for conduit c19 WaRNING 04: minimum elevation drop used for conduit cz mapntag 04: minimum elevation drop wed for Conduit cer WARNING 04: minimum elevation drop used for conduit c2 warning 04: minimum elevation drop used for conduit C2 WARNING 04: minimum elevation drop used for Conduit C_{2} warving 04: minimum elevation drop used for Conduit c4 warning 04: minimum elevation drop used for conduit c5 WARNING 04: minimum elevation drop used for Conduit c6 WARNING 03: negative offset ignored for Link C6025a WARNING 03: negative offset ignored for Link c6055a WARNING 03: negative offset ignored for Link c6060k warning 04: minimum elevation drop used for conduit c6135 WARNING 03: negative offset ignored for Link C6180a WARNING 03: negative offset ignored for Link C6220 warving 04: minimum elevation drop used for Conduit c7 warning 03: negative offset ignored for Link c7025 Warning 04: minimum elevation drop used for conduit c7025 WARNING 03: negative offset ignored for Link c710

NARNING 03: negative offset ignored for Link c7105 warning 04: minimum elevation drop used for conduit c710s NARNING 04: minimum elevation drop used for Conduit ca warning 04: minimum elevation drop used for conduit c9 NARNING 04: minimum elevation drop used for conduit cJG warning 04: minimum elevation drop used for Conduit CJ66 warning 04: minimum elevation drop used for Conduit CJ73 NaRNING 04: minimum elevation drop used for Conduit CJ76 warning 04: minimum elevation drop used for conduit cJ80 ARNing 04: minimum elevation drop used for Conduit CJ8 warning 04: minimum elevation drop used for Conduit CJ84 warning 03: negative offset ignored for Link CJ87 waRning 03: negative offset ignored for Link cJs8 warning 03: negative offset ignored for Link or1180-1 WaRNING 03: negative offset ignored for Link or1205-1 warning 02: maximum depth increased for Node J10 warning 02: maximum depth increased for Node 102 warning 02: maximum depth increased for Node J12 warning 02: maximum depth increased for Node J1 WARNING 02: maximum depth increased for Node J14 warning 02: maximum depth increased for Node J15 warning 02: maximum depth increased for Node J16 WARNING 02: maximum depth increased for Node Jı

WARNING 02: maximum depth increased for Node J18 WARNING 02: maximum depth increased for Node J19 WARNING 02: maximum depth increased for Node J2 WARNING 02: maximum depth increased for Node J 20 WARNTNG 02: maximum depth increased for Node T2l 2 WARNING 02: maximum depth increased for Node J22 WARNING 02: maximum depth increased for Node J23 WARNING 02: maximum depth increased for Node J24 Warving 02: maximum depth increased for Node 32 WARNING 02: maximum depth increased for Node 3 WARNING 02: maximum depth increased for Node J33 WARNING 02: maximum depth increased for Node J37500 WARNING 02: maximum depth increased for Node J38 WARNING 02: maximum depth increased for Node J40 waRning 02: maximum depth increased for Node J40323 WARNING 02: maximum depth increased for Node J41 WARNING 02: maximum depth increased for Node J41106 WRRNING 02: maximum depth increased for Node J48 WARNING 02: maximum depth increased for Node J49 WARNING 02: maximum depth increased for Node J5 WARNING 02: maximum depth increased for Node J5015 warning 02: maximum depth increased for Node 55025 Warning 02: maximum depth increased for Node J5030

WARving 02: maximum depth increased for Node J5045 warning 02: maximum depth increased for Node J5065 VARNING 02: maximum depth increased for Node 55080 WARNING 02: maximum depth increased for Node J509 WARNING 02: maximum depth increased for Node J5110 warning 02: maximum depth increased for Node J5150 VARNING 02: maximum depth increased for Node 5518 warning 02: maximum depth increased for Node J5190 warning 02: maximum depth increased for Node J5 WARNING 02: maximum depth increased for Node J56 waRNING 02: maximum depth increased for Node J58 warning 02: maximum depth increased for Node 558.5 warving 02: maximum depth increased for Node $J 67$ warning 02: maximum depth increased for Node J6 warning 02: maximum depth increased for Node $J 7$ WARNING 02: maximum depth increased for Node $J 71$ warning 02: maximum depth increased for Node J72 TapNTNG 02: maximum depth increased for Node J7 WARNING 02: maximum depth increased for Node JTS WRRNING 02: maximum depth increased for Node 776 WARNING 02: maximum depth increased for Node Ј8 WARNING 02: maximum depth increased for Node J80 VARNING 02: maximum depth increased for Node J8

WARNING 02: maximum depth increased for Node 584
WARNING 02: maximum depth increased for Node J85
marntwg 02: maximum depth increased tor not
WARNING 02: maximum depth increased for Node J87
WARNING 02: maximum depth increased for Node J88
WARNING 02: maximum depth increased for Node J89
WARNING 02: maximum depth increased for Node
WARvivg 02: maximum depth increased for Node J90
Rainfall File Summary

APR-02-1960

Total Precipitation
Evaporation Loss
Infiltration Loss
Infiltration Loss.
Surface Runoff
Finat
Final Surface estorage......
Continuity Error (8)

Dry Weather Inflow $\ldots \ldots$
Dry Weather Inflo
Wet weather Intio
Groundwater Inflo
Inflow

External Inflow
External
Thtflow

Volume hectare-m	${ }_{\text {Volume }}^{\text {V }}$
0.000	0.000
14.985	3149.884
0.000	0.000
${ }^{0.000}$	${ }^{0.0000}$
3. 62	3136.238

Storage Losses	0.000	0.000
Initial stored volume	0.000	${ }^{0.001}$
	0.648 0.228	6.479
Highest Continuity Er		
Node J5190 (20.788)		
Node J102 (5.648)		
Node J29 ${ }^{(4.818)}$		
Node J58.5 (-3.998)		

Time-Step Critical Elements		
Link C12 (38.458)		
Link C18 (34.368)		
Link C17 (9.098)		
Link C20 (7.098)		
Link C1 (3.128)		
Highest Flow Instability Ind		
Link CJ64 (8)		
Link CJ66 (6)		
Link C7025 (5)		
Link CJ65 (4)		
Link C8 (4)		

${ }_{\text {Rout ing }}^{\text {Time }}$ (textep Summary		
Minimum Time step	0.50 sec	
Average Time Step	2.64 sec	
Maximum Time Step	30.00 sec	
Pexcent in Steady State	${ }^{0.00}$	
Average Iterations per step	2.28	

Subcatchment	$\substack{\text { Total } \\ \text { Precip } \\ \text { nin }}$	$\begin{gathered} \text { Total } \\ \text { Rounon } \\ \text { Rn } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Evap } \\ \text { min } \end{gathered}$	$\begin{gathered} \text { Total } \\ \substack{\text { Tiffil } \\ \text { mm }} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Runof } \\ \text { mim } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Runoff } \\ 10^{\circ} 61 t r \end{gathered}$	$\begin{gathered} \text { Peak } \\ \text { Runoff } \\ \text { CMS } \end{gathered}$	${ }_{\substack{\text { Runoff } \\ \text { Coeff }}}$
1000	108.17	0.00	0.00	10.02	97.43	93.95	14.22	0.901
1002	108.17	0.00	0.00	23.53	84.19	133.37	17.76	0.778
1005 1007	108.17 108.17	0.00 0.00 0.00	0.00 0.00	- $\begin{array}{r}9.05 \\ 21.36\end{array}$	${ }_{86.40}^{98.53}$	50.80 18.18	12.26 $\substack{3.29 \\ \hline \\ \hline}$	0.911
1010	108.17	0.00	0.00	${ }_{20.03}$	87.77	33.73	6.77	${ }_{0} .811$
1015	108.17	0.00	0.00	18.15	89.74	12.87	3.46	0.830
1020	108.17	0.00	0.00	45.09	${ }^{63.06}$	58.61	3.29	0.583
1025 1027	108.17 108.17	0.00 0.00	0.00 0.00	32.00 3.52	76.02 103.84	10.58 58.68	- ${ }^{1.63} 1$	0.703 0.960
1030	108.17	0.00	0.00	8.94	198.67 93	32.97	$\begin{array}{r}11.60 \\ \hline\end{array}$	${ }^{0.912}$
1035	108.17	${ }^{0.00}$	0.00	$\begin{array}{r}44.53 \\ 4.50 \\ \hline 2.50\end{array}$	63.63 103	${ }^{66.96}$	3.80 5 5	0.588
1045	${ }_{108.17}$	${ }_{0} 0.00$	${ }_{0} 0.00$	- 42.09	103.89 66.07	17.66	1.07	${ }_{0.611}^{0.960}$
1050	108.17	0.00	0.00	42.59	65.53	80.34	6.89	0.606
1055	108.17	0.00	0.00	${ }^{43.66}$	${ }^{64.50}$	20.62	1.19	0.596
1060 1065	108.17 108.17	0.00 0.00	0.00 0.00	46.63 33.84	${ }_{74.23}^{61.52}$	70.96 21.55	3.88 3.02	0.569 0.686
1070	108.17	0.00	0.00	51.40	56.74	${ }_{49.92}^{21.95}$	2.60	${ }_{0}^{0.525}$
1072	108.17	0.00	0.00	3.56	103.76	55.59	9.55	0.959
1075	108.17	0.00	0.00	40.21	67.95	26.20	1.71	0.628
${ }_{1080}^{1085}$	108.17	${ }^{0.00}$	0.00	48.27 4.05	59.84		13.28 4 4 123	0.553
1085 1090	${ }_{108.17}^{108.17}$	0.00	0.00 0.00	${ }_{4}^{49.05}$	59.10 66.69	79.77 16.53	${ }_{1}^{4.23}$	-
1095	108.17	0.00	0.00	49.65	58.50	94.29	4.97	0.541
1100	108.17	0.00	0.00	49.01	59.14	${ }^{31.82}$	1.69	0.547
1105 1110	108.17	${ }^{0.00}$	0.00	38.10 44.70	69.88 ${ }_{6}^{6.45}$	-96.56	11.65	-0.646
1115	108.17	0.00	0.00	38.26	69.87	79.47	7.49	0.646
1120 1125 1	108.17 10817	0.00	0.00	44.25 4.28	63.90	9.74	5.18	0.591
1125 1130	108.17 108.17	O.00 0.00	0.00 0.00	44.48 50.61		55. 139 130.34	3.16 6.82	0.589 0.532
${ }_{1135}^{1135}$	108.17	0.00	0.00	40.26	67.89	23.99	${ }^{1.56}$	0.628
1135 1140	${ }_{108.17}^{108.17}$	-	-	42.87 29.13	${ }_{78.93}^{65.28}$	15.94 20.36	-	- ${ }^{0.604}$
1145	108.17	0.00	0.00	47.87	60.24	97.52	7.78	0.557
1150 1155	108.17 108.17	${ }^{0.00}$	0.00	31.71 46.85	76.32 61.30	10.10	${ }_{1}^{1.57}$	0.7

	00000000000000 :8:8:8:8:8:8:8:8:
	00000000000000 $: 8: 8: 8: 8: 8: 8: 8:$
	Oo. O0000000000

$\underset{\substack{\text { Tode } \\ * * * * * * * * * * * * * * * * * * * ~ S u n ~}}{ }$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Node \& Type \& $$
\begin{array}{r}
\text { Average } \\
\text { Depth } \\
\text { Meters }
\end{array}
$$ \& Maximum
Depth
Meters \& Maximum
HGL
Meters \& \multicolumn{2}{|l|}{Time of Max Occurrence days hr:min}

\hline Ј0.5 \& Junction \& 1.93 \& 2.80 \& 180.70 \& 0 \& 12

\hline J0.75 \& JUNCT T ON \& 1.84 \& 3.39 \& 181.79 \& 0 \&

\hline J0. 8 \& JUNCTITON \& 2.05 \& 3.49 \& ${ }^{181.59}$ \& 0 \& 17:25

\hline J0.9 \& JUNCT ToN \& 1.61 \& 3.00
1.85 \& 181.60
186.85 \& \bigcirc \& 17:25

\hline ${ }^{1}$ \& Junction \& 0.77 \& 1.85 \& 186.85 \& 0 \& 08:23

\hline ${ }^{310}$ \& JUNCT ToN \& 1.96 \& 3.34 \& 182.16 \& \bigcirc \& 15:49

\hline ${ }^{3102}$ \& JUNCT ToN \& 0.88 \& 1.79 \& 182.52
183.61 \& 0 \& 14:07

\hline ${ }^{5105}$ \& JUNCTION \& 0.81
0.59 \& 1.67 1.45 \& ${ }_{183.65}^{183.61}$ \& \bigcirc \& 10:03

\hline ${ }_{5106}$ \& JUNCTION \& 0.34 \& 1.12 \& 183.93 \& \bigcirc \& 09:33

\hline J107 \& JUNCTITON \& 0.32 \& 1.19 \& 185.38 \& 0 \& 08:45

\hline ${ }^{111}$ \& Junction \& ${ }^{0.32}$ \& 1.23 \& 185.43 \& 0 \& 08:45

\hline ${ }^{312}$ \& Junction \& 1.91 \& 3.42 \& 182.52 \& 0 \& 15:33

\hline ${ }_{114} 12$ \& JUNCTION \& ${ }^{2.61}$ \& 3.69 \& 186.69 \& 0 \& 09:12

\hline J14

115 \& JUNCTION \& 1.80
1.81 \& 3.36
3.36

3. \& | 188.42 |
| :--- |
| 183.54 | \& \bigcirc \& 14:56

\hline ${ }^{1} 16$ \& Juncrion \& 1.75 \& 3.24 \& 183.75 \& 0 \& 14:06

\hline 317 \& JUNCTION \& 2.28 \& 3.60 \& 180.81 \& 0 \& 18:08

\hline ${ }^{18}$ \& Juncrion \& 1.27 \& 2.67 \& 184.30 \& 0 \& 13:44

\hline ${ }_{51} 12$ \& JUNCT ToN \& ${ }^{0.83}$ \& ${ }_{3}^{1.59}$ \& -84.79 \& 0 \& 13:11

\hline \& JUNCTION \& 2.27 \& 3.73 \& 181.59 \& \& 25

\hline
\end{tabular}

 OOOOOOOOOOOOOH

 N

Flow Classification Summary

Conduit	$\underset{\substack{\text { Adjusted } \\ \text { Actual } \\ \text { Length }}}{\substack{\text { ate }}}$		$\begin{aligned} & \text { Fract } \\ & \text { Or } \\ & \text { Ory } \end{aligned}$	$\begin{aligned} & \text { on of } \\ & \text { Down } \\ & \text { Doy } \end{aligned}$	$\begin{aligned} & \text { Time } \\ & \text { Simb } \\ & \text { Cub } \\ & \text { Crit } \end{aligned}$		$\begin{aligned} & \text { Class } \\ & \text { Cp } \\ & \text { Crit } \end{aligned}$	$\begin{aligned} & \text { Down } \\ & \text { Crit } \end{aligned}$	Avg. ${ }^{\text {Froude }}$ Number	$\begin{gathered} -\cdots-1 .-1 \\ \text { AgG. } \\ \text { FIow } \end{gathered}$ $\begin{aligned} & \text { HRow } \\ & \text { Change } \end{aligned}$
1	1.00	0.00	0.00	0.00	1.00	0.00	0.00	. 00	0.05	
c10	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.03	
${ }^{\text {C11 }}$	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
${ }^{\text {c12 }}$	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.06	
C13 C14	1.00	1.00	0.00	0.00	0.00	0.00	0.00	- 0.00	0.00	
c14	1.00	0.00 0.10	0.01		-	0	0.00	0.42 0.07		

Mong促 ㅇop000 .

 앙․ㅇ․ㅇ․ㅇㅇㅇ․

Al11 slopes are assumed to be 0.158 (from Turkey Creek and Little River Subwatershed study -
Dillon Consulting Limited, June 1998).

tsubca	Raingage	Out1et	Total Area	Pont. Imperv	Width	Pent. Slope	Curb Length	Snow
; 6 th Conc Road Drain North of 401								
	Drain, between	baseline and	ion Rd					
$2005{ }^{24 \mathrm{hr}}{ }^{\text {j6 }}$			48.04	60	1300	0.15	0	
$2007{ }^{2} 4 \mathrm{hrr}$,		j31	20.	60	00	0.15	0	
${ }_{2010}^{j \text { East }}$ of 6 th Conc Drain, south		${ }^{4} 31$	40.96	60	800	0.15	0	
${ }_{\text {; Drains }}$ Doto 7 th Conc Road Drain								
		J54	10.55	60	00	0.15	0	
		s2020	66.13	67	1400	0.15	0	
		Svincial Rd			300			
${ }_{2027} \times 7$ th Conc Drain	south of 401							
	2 hhr	8.7	59.42	60	900	0.15	0	
${ }_{i}^{28 \text { th }}$ Conc Drain,	${ }_{24 \mathrm{hr}}{ }^{\text {a }}$ (ong Baseline	s2030	117.58	49	1000	0.15	0	
${ }_{\text {; }}^{2030}$ Conc Drain,	north of 401							
${ }^{2035}$	2 hhr	s2035	81.42	63	1400	0.15	0	
${ }_{2040}^{88 \mathrm{th}}$ Conc Drain,	between 401 and	${ }_{\text {J2 }}{ }^{\text {division Rd. }}$	25.6	60	500	0.15	0	
${ }_{2045}^{\text {i }}$ Hayes Drain at B	Baseline							
	${ }_{\text {2 }}^{24 \mathrm{hrx}}$	s2045	${ }^{63.81}$	${ }^{43}$	900	0.15	0	
;To Hayes Drain,	24 hr	s2050	97.34	47	1200	0.15	0	
${ }^{2} 9055$ Conc Drain,	${ }_{24 \mathrm{hr}}^{\text {at Baseline }}$	s2055	65.11	50	900	0.15	0	
	north of 401							
2060 (2000	south of 401			57	700	0.15	\bigcirc	
${ }_{2065}^{\text {joth Conc Drain so }}$	${ }^{24 \mathrm{hr}}$	S2065	116.33	77	1000	0.15	0	
;To Little River,	${ }_{24 \mathrm{hr}}$		94.85	5	1300	0.15	0	
;To Hurley Drain	24 hr	${ }^{54}$	42.27	60	700	0.15	0	

iRiver: Washbrook
RReach: Washbrook

; Reach: Washbro
FTransect: 44
J80
Sransect: ${ }^{44} 1$ 180
; River: Washbrooke
Reach: Washbrook
iRiver: Washbrook
;Rean: Washbrook
;Transect:
81

Reach: Baseline to Wats
Junction: of upper reach of Little River and 6th Concession
thiope of 6 th Concession (c6055a-d)

iReach: washbroo
$\substack{\text { i. Transect: } \\ \text { J88 } \\ 88}$

iTransect: : 88
J88
;River: Washbroo
;Reach: Washbroole
Reach: Washbrooke
Transect: 89

Reach: Watson River
TTransect: 9
River: Little River 17844
Reach: Baseline to wats
;Reach: Baselii

County Road 42
JJunction of catchments
T92
17110,1115

:River: Little River
Reach: Watson to Desjardein

iReach: Watson to soulliere in C 6135 b	J95	85	0.045	178.15	178.1	0	0
10th Concession Drain Transect copied from Transect 102 from adjacent Watson Drain Conduit copied to provide outlet for Catchment 1145 ; Slope, Length, Manning's n from SWMHYMO							
$\xrightarrow[\text { C6145 }]{\text { CRiver: Little }}$		1140	0.045	179	178.864	0	0
; Reach: watson to Desjardeins							
	for tra	$\begin{aligned} & \mathrm{t} \\ & 1600 \end{aligned}$	0.045	178.1	178	0	0
;River: Little River							
;Reach: Dessardeins to Little River							
; Adjusted from hec-ras impor	Uton	d ju	delete	1eng	d	rd	
$\xrightarrow{\text { C6160a }}$ (River: Little River ${ }^{\text {J96 }}$	J24	270	0.045	178	178	0	0
C6160b J2	${ }^{546203}$	410	0.045	178	177.7	0	0
	${ }^{3} 46102$	426	0.045	177.7	177.1	0	0
iRiver: Little River ${ }_{\text {R }}$ Reach: Lachance to Goui							
	J43501	194	0.045	177.1	176.9	0	0
;River: Little River							
;River: Little River							
; Reach: Lachance to goui							
	J41106	90	0.045	177.2	177.1	0	0
;River: Little River							
	J40323	78.2	0.045	177.1	177	0	
;River: Little River							
;River: Little River							
	J5	150	0.045	176.9	176.8	0	
indiver: Little River							
;This is a Repeated							
C6180e J37500	J5205	150	0.045	176.8	176.7	0	0

W2100	Rectopen	1	5	5	5
W2105	${ }_{\text {Rectoremen }}^{\text {Rect }}$	1	5	5	5
W2115	RECTIOPEN	1	5	5	5
${ }_{\text {W2130 }}$ W2125	${ }_{\text {Rect }}^{\text {Rect }}$ OPEN	1	5	5 5	5
W2133	Rectopen		5	5	5
W2135	RECT-OPEN	1	5	5	5
W2140	RECTOPEN	1	5	5	5
${ }_{W} \mathbf{W} 2165$	${ }_{\text {RECT }}^{\text {RePE }}$	1	5		
W2175	Rectoopen	1	5	5	5
W2185	Rectopen	1	5	5	5
W2190	RECT-OPEN	1	5	5	5
W2200	RECT-OPEN	1	5	${ }_{5}^{5}$	5
${ }_{\text {W2215 }}$ W2210	${ }_{\text {RECCT }}^{\text {RePEN }}$	1	5	5	5

[transects]
; Copy of desuardeins drain section 4
Nc 0.1
0.1
 ;High-chord transect for bridge 0.35 (River: Gouin; Reach: Gouin)
; COPY OF DESJARDETNS DRATN SECTITN

; copy of desuardetns drain section 4

$\begin{array}{ll} \begin{array}{ll} \mathrm{x} 1 & 0.75 \\ \text { GR } \\ \text { GR } & 181.7 \end{array} \\ \hline 181.5 \end{array}$	$\begin{aligned} & 2605 \\ & 3024.75 \end{aligned}$	$\stackrel{8}{181.3}_{\substack{181.6}}$	$\begin{gathered} 3005.457 \\ \text { 300. } 5777 \\ 3038.4977 \end{gathered}$	$\begin{aligned} & 3024.75 \\ & 7178.6 \\ & 7182 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 3009.33 \\ & 3438 \end{aligned}$	${ }_{178.4}^{0.0}$	${ }_{3014.085}^{0}$	$\stackrel{0}{178.5}$	${ }_{3017.186}$
; Copy of	SJardeins	DRAIN SECTION 4 - based on 1997 SWM report, dimensions of the drain are accurate; 3 m bottom, $2: 1$ side slope:0.045							
Nc $\times 10.1$ $\times 10.9$									
${ }_{\text {GR }} 181.9$	2605	181.5				0.0178.6	${ }_{3014.085}^{0} 178.7$		${ }_{3017.186}^{0}$
GR 181.7	3024.75	181.8							
nc 0.1	0.1	$22^{0.045}$	2993	3012.47					
${ }_{\text {CR }}{ }_{\text {K1 }} 1818$					${ }_{2525}$	${ }^{0.0} 181.5$	${ }_{2700}$	${ }_{181.5}^{0}$	${ }_{2800}$
GR 181.3	2850	${ }_{181.1}$	2925	181	2990.2	180.5	2991.5	${ }_{180.5}^{1815}$	2992
GR ${ }_{\text {GR }} 1818.5$	${ }_{3002.54}^{2993}$	179.6	${ }_{\substack{2994.91 \\ 3012.47}}$	179.3	2995.65	178.5	2997.625		
${ }_{\text {GR }}^{\text {GR }} 11818.7$	${ }_{3650}^{3002.54}$			181	3140	181.5	3250	181	345
-									
; High-cho NC 0.1	transect 0.1	for bridge 1.		River: Little River;		Reach:	Desjar		
x1 1.5_HC			$\begin{aligned} & 23300 \\ & 3140 \end{aligned}$	${ }^{0} 182.5$	${ }_{2991}^{0.0}$	$\begin{aligned} & 0.0 \\ & 183.4 \end{aligned}$	${ }_{2991.1}^{0}$	${ }_{183.4}^{0}$	03009.1
	2295	182.5							
GR 182.5	3009.2	182.5							
NC 0.1	0.1	0.045							
${ }^{\mathrm{X} 1} 1.6$			2993	3012.47	0.0	0.0	0	0	0
	2295	181.5	${ }_{290}^{2300}$	181.5	2525	181.5	2700	181.5	2800
GR 181.3	${ }_{2850}^{2850}$	${ }^{181.1}$	2925	181	${ }_{2990.2}$	1880.5	${ }^{2991.5}$		
GR 178.6	${ }_{302}^{2993}$	${ }_{181.9}$	2994.91 3012.47	${ }_{181.4}^{179.3}$	${ }_{3140}^{295.65}$	${ }_{181.5}^{178.5}$	${ }_{3250}^{299.625}$	178.1	3000.09
nc 0.1	0.1	45							
$\times 110$		21		3017.		0.0	0		
GR 184	1900	184	1940	184	2000	184	2300	184	
GR ${ }_{\text {GR }} 1789.8$	${ }_{3001.004}^{2800}$	184 179			${ }_{2949.9} \mathbf{3 0 1 0} 7$			${ }_{182}^{181.6}$	2994
GR 184	3050.1	184	3150	184	3300	184	3500	184	3750
GR 18	4300								

[LE: 2950] [RE: 3050]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline nc 0.045 \& . 045 \& 0.03 \& \& \& \& \& \& \&

\hline ${ }_{\text {K1 }}^{\text {K1 }} 180$ (orig) \& \& ${ }_{182}^{19}$ \& 2994

1940 \& ${ }_{3017} 18214$ \& \& ${ }^{0.0}$ \& ${ }_{2300}$ \& \&

\hline ${ }_{\text {GR }}^{\text {GR }} 18188$ \& 1900 \& ${ }_{182}^{182}$ \& ${ }_{2845}^{1940}$ \& ${ }_{182}^{182}$ \& ${ }_{2950}^{2000}$ \& 182 \& ${ }_{2909}^{2300}$ \& 182 \&

\hline \& 3005.344 \& 179 \& 3010.77 \& 181.6 \& 3017.014 \& 182 \& 3050 \& 182 \&

\hline GR \& 3300 \& 182.5 \& 3500 \& 182 \& 375 \& 184 \& ${ }_{43}$ \& \&

\hline \multicolumn{10}{|l|}{; Proposed Channel Section with SWM}

\hline nc 0. \& 0.1 \& \& \& \& \& \& \& \&

\hline X1 1001 \& \& 10 \& 78.5 \& 82. \& 0.0 \& 0. \& \& \&

\hline GR \& 63. \& \& \& 97 \& 76 \& \& \& \&

\hline GR 96.7 \& 81 \& 97 \& 82.5 \& 97 \& 85 \& 99. \& \& \& $$
100
$$

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \&

\hline ${ }_{\text {K1 }}^{\text {X1 }} 1002$ \& \& 12 \& 86 \& 90 \& 0.0 \& 0.0 \& 0 \& 0 \&

\hline GR 100 \& \& \& ${ }^{66}$ \& \& \& \& \& 96 \&

\hline ${ }_{\text {GR }}^{\text {GR } 97.7}$ \& ${ }_{120}^{92.5}$ \& 95.7 \& 93.5 \& 96 \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{opy of SEC 18 from littile river dratn}}

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& 299 \& ${ }^{3} 18.494$ \& \& ${ }^{0} 0$ \& \& \&

\hline ${ }_{\text {GR }}^{\text {GR } 182.5}$ \& ${ }_{3002}^{253045}$ \& 185.2 \& ${ }_{3003.498}$ \& ${ }_{184.5}^{184.3}$ \& ${ }_{3300}^{2994}$ \& ${ }_{185}^{182.4}$ \& ${ }_{4000}^{2997.988}$ \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{| ; COPY OF | SEC 20 | FROM LITTLE | RIVER DRAIN | |
| :---: | :---: | :---: | :---: | :---: |
| NC 0.1 | 0.1 | 0.045 | | |}}

\hline \& \& \& \& \& \& \& \& \&

\hline GR 186.5 \& 2594 \& 186.1 \& 2994 \& 185.3 \& 2995.615 \& 184 \& 2997.731 \& \& 2999.748

\hline GR 186.3 \& 3001.563 \& 186.7 \& 3401 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{; COPY OF
NC 0.1
0.1
SEC
0.1
0.1
FROM
LITTTLE
0.045}}

\hline \& \& \& \& \& \& \& \& \&

\hline x1 104 \& \& \& 2994 \& 3001.563 \& 0.0 \& 0.0 \& \& \&

\hline GR 186.5
GR 186.3 \& ${ }_{3001.563}^{2594}$ \& 186.1
186.7 \& 2994
3401 \& 185.3 \& 2995.615 \& \& 2997.731 \& \& 299

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}}

\hline NC. 0.1
$\times 11$ \& \& \& \& \& \& \& \& \&

\hline GR 186.7 \& \& \& 2994 \& \& \& \& 3001.978 \& \&

\hline GR 186.2 \& 3005.278 \& 186.3 \& 3006 \& 186.6 \& 3406 \& \& \& \&

\hline \multicolumn{10}{|l|}{Of Sec 23 from littie river drain}

\hline
\end{tabular}

wc 0.1	0.1	0.045							
${ }_{\text {GR }} 185.2$	2900	185	3000 3000	3004.8 183.5	3001.9	${ }_{183.5}^{0.0}$	3002.9	${ }_{185}^{0}$	${ }_{3004.8}$
GR 185.2	3105								
; From Desjar	din Dra	n Plan	nd						
		$6{ }^{0.045}$							
GR 185.2	2900	185	3000	182	3004.5	182	3006	185	3010
; From Twin	Oaks Bui	sness Par	k SWM Repor						
	0.1	.045	3000	3013	0.0	0.0	0	0	
GR 185.2	2900	185	3000	182	3006	182	3007	185	3013
GR 185.2	13								
; From Profil			Lappan Dra	rain a	McGill out1				
		0.045							
$\times 1115$			3000	3007.5	0.0	0.0		0	
GR ${ }_{\text {GR }} 1855.2$	2900	185	3000	183	${ }^{3003}$	185	3004.5	185	3007.5
; From Profil			Lappan Dra	rain and M	McGi1				
Nc 0.1 $\times 11116$									
GR 185.2		${ }_{185}$	3000	${ }_{183.5}$	3002.2	183.5	3003.7	185	3005.9
GR 185.2	3106								
; From Plan,	Profile,	and Cro	ss Section	of the	Gouin Drain				
$\times 1117$									
GR GR 185.2	2900	185	3000	183	3003	183	3004	185	3007
GR 185.2	3107								
wc 0.1	0.1	0.045							
$\times 12$		20	2994	3023.947		0.0	0		
${ }_{\text {GR }}^{\text {GR }} 1884.3$	1900	183	1940	183	2000	183	2300	183	2630
GR 183	2800	183	2875	183	2950	183		180.1	3003.
${ }_{\text {GR }}^{\text {GR } 183}$	${ }_{3006.565}^{3005}$	179.1	${ }_{\substack{3099.925 \\ 3150}}$	${ }_{183}^{18.1}$	3014.217 3300	180.	3015.716 3500	183.2	3023. 3750
GR 183	3050	183	3150	183	3300	183	3500	183.2	
	0.1	0.045							
$\times 1.3$		18	2994	3017.137		0.0	0	0	
GR 183.9	2250	183.4	2350	183.7	2480	183.1	2620	183	2675

\% High-chord transect for bridge
NC 0.1
0.025
0.1

$\begin{array}{ll}\text { NC } & 0.1 \\ \times 113.25\end{array}$	0.1	${ }_{10} 0$.	0	-		0.0			
GR 183.9							$\begin{array}{r} 0 \\ 2994 \end{array}$	183.9	2994.
$\begin{array}{ll}\text { GR } & 183.9\end{array}$	${ }_{3006}$	${ }_{183.1}^{183.1}$	3040	183.2	$\begin{aligned} & 2950 \\ & 3270 \end{aligned}$	183.4	3350	184	4000

GR 184	3210	184.8	3260	184.8	345				
	transect for bridge 16.5 (River: Little River; Reach: Baseline to Wats).								
				$\begin{aligned} & 185.2 \\ & 184.5 \end{aligned}$	$\begin{aligned} & 0.0 \\ & \substack{2300 \\ 3170} \end{aligned}$	0.0 184.6	$\begin{aligned} & 2710 \\ & 37250 \end{aligned}$	$\begin{aligned} & 184.6 \\ & 184.6 \end{aligned}$	$\begin{aligned} & 0 \\ & 303.1 \\ & 3030 \end{aligned}$
	1000		000						
	3006	184.6	3050						
	0.1								
$\times 117$.1		299	305	0.0	0.0	0		
GR 185	2000	184.7	2300	184.5	2550		2710		2880
GR 183.7	2950	183.938	2993	180.916		180	29	180.	3001
GR 183.6	3050	183.9	3170	184.1	3225	184.3			
GR 185	4000								
nc 0.1	0.1	0.045							
			2999	3009.5	0.0	0.0	0		
GR 185.5	2990	185.2		184.3	3000	182.4	3004	181.6	3006.1
GR 182.5	3008	185.2	3009.5						
nc 0.1	0.1	0.045							
$\times 119$			2994	3008.988	0.0	0.0		0	
GR 186.4	2899	186.2	2993	185.7	2994		2996.861	184	2999.958
GR 185	3003.863	185.9	3008.988	8186.2	3009	186.4	3100		
NC 0.1	0.1	0.045							
${ }_{\text {K1 }}^{\text {C1 }} 184$		${ }_{181}^{181.5}$	${ }_{2}^{2925}$	${ }^{2944.65}$	${ }^{2} 25$	${ }_{181.5}^{0.0}$		${ }_{181.5}$	2800
GR 181.3	2850	${ }_{181.1}$	2925	178.6	2928.98	178	2932.22	178.5	2935.995
GR 181.6	2944.65	181.2	3075	181.4	3140	181.5	3250		
	0.1	0.045							
${ }_{\text {CR }}{ }_{\text {G1 }} 1806.5$			${ }_{2993}^{2994}$	${ }_{\substack{3001.563 \\ 186.1}}$		${ }_{185.3}^{0.0}$	${ }_{2} 995.615$	${ }_{184}^{0}$	2997.731
GR 185	2999.748	186.3	3001.563	¢ 186.5	3101				
nc 0.1	0.1								
${ }^{12} 21$			2994	${ }^{3001.563}$					
GR 186.5	2594	186.1	2994	185.3	2995.615		2997.731	185	2999.748
GR 186.3	3001.563	186.7	3401						
	0.1	0.045							
X1 22			2994	3005.278	0.0				
GR 186.5	2894	186.3	2994	184.9	2998		3001.	185.1	3004.914
GR 186.2	3005.278								

$\begin{aligned} & \text { NC } 0.1 \\ & \text { X1 } 23 \\ & \text { GR } 186.85 \\ & \text { GR } 186.4 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 2615 \\ & 3025.443 \end{aligned}$	$\begin{aligned} & 7^{0.045} \\ & 1866.455 \\ & 186.8 \end{aligned}$	$\begin{gathered} 3015.126 \\ 3015.126 \\ 3425 \\ \hline 425 \end{gathered}$	$\begin{aligned} & 3025.443 \\ & 6185.3 \end{aligned}$	3019.358	${ }^{0.0} 185.111$	3021.732	185.3	3023.129
nc 0.1	0.1	0.045							
			2994	3005.566 1855 1855	0.0	0.0	0.	${ }^{0}$	${ }^{0}$
$\begin{array}{ll}\text { GR } & 186.75\end{array}$	3005.566	186.88 187.15	2994 3405	185.555	2996.426	185.225	2998	85	300
; Upstream of desjardins junctionNC 0.10.1									
GR 185	2280	182	2290	181.2	2300	181.1		181	
	2850	181	2950	180.4	2950		2955.12		2964.396
	2977.	181.2	2981.	181.3	325	181		181.	
GR 182	4000	182.4	4650	182.9	550				
nc 0.1	0.1	0.045							
$\times 132$			299	3010.776	. 0	0.0		0	
185.5	2893	185.3	2993			184.726			
GR 182.219 GR 185.209	3000.193 3010	183.425	${ }_{3011}^{3000.857}$	${ }_{185.5}^{184.746}$	${ }_{3111}^{3004.5}$	184.978	3005.949		3007.195
	0.1	0.045							
$\times 133$			2994	3007.807	0.0				
${ }_{\text {GR }} 185.9$		185.7		184.69		184.46			
GR GR 1855.7	3000 3008	182.76 185.9	${ }_{3108}^{3001.067}$		3004.397		3005.992		3007.807
	0.1								
185.				185.21		185			
GR 183.49	2998.	183.76	2999.	185.12	3001.		3004.25		3005.229
GR 185.54	3008.898	185.6	3009	185.8	3109				
nc 0.1	0.1								
$\times 134001$		15	2990	3010	0.0	0.0	0	0	
GR 182	2590	181	2600	180.8	270	180.	2830	180	
GR 179.9	2990	176.	2998	176.7	3002	179.9	30	179.	
GR 179.5	3065	180	3085	180.5	3145	180.7	327	181	34
	0.1								
			2994	3008.	. 0				
	2893	185.8	2993	185.54	2994	184.41	2996.028	183.	2996.871

$\begin{array}{lll}\text { GR } & 183.81 \\ \text { GR } & 185.72\end{array}$	$\begin{aligned} & 2997.366 \\ & 3005.411 \end{aligned}$	$\begin{aligned} & 6184.08 \\ & 185.79 \end{aligned}$	$\begin{gathered} 2997.881 \\ 30078 \\ 3089 \end{gathered}$	$\begin{gathered} 184.35 \\ \hline 9 \\ \hline 9 \\ 185.85 \end{gathered}$	$\begin{aligned} & 2998.831 \\ & 3009 \end{aligned}$	${ }_{186}^{185.41}$	$\begin{aligned} & 3000.964 \\ & 3109 \end{aligned}$	185.63	3003.071
we 0.1	0.1	0.045							
$\times 135002$		19	2990	3010	0.0	0.0	200		0
GR 183	2500	182	2590		2600	180.8	2700	180.6	2830
${ }_{\text {GR }}^{6 R} 1180$	2900 3018	179.9	2990 3065	176.7 180	2998 3085	176.	3002 3145	179.9 180.7	
${ }_{\text {GR }}^{\text {GR }} 181819$.	3018 3430	179.5 181.5	3065 4000	180 182	3085 4750	180 182 18			
\% High-chord transect for bridge 35092.5 (River: Little River; Reach: Gouin to DS end).; This is a REPARED section.									
$\times 135092$.					0.0				
	2500	180.6	2630	180.5		181	2950	181.4	83
GR 181.4	2989.2	182	2989.3	182	3013.9	181.4	3014	181.4	
GR 181	3065	180.9	3085.	180.6	3170.				
$\times 135183$		23	2992.7	3007.5	0.0	0.0	0		
GR 183	2500	180.6	2630	180.5		180	2900	179.4	
GR 179.9	2983	177.9	2989.2	177.9	2989.3	176.8	2992.7	177.4	2992.8
GRGR1799.8	2994.6	176.8	3000	176.8	3007.4	176.8	3007.5	179.3	3013.9
	3014 3145	179.9 180.6	${ }_{3170}^{3015.3}$	179.5	${ }_{3275}^{3018}$	179.5	3065	180	3085
GR 180.5	3145	180.6	3170	180.7	3275				
NC$\times 1$$\times 1$$\frac{0.1}{35404}$ GR 181.9GR 176.8	0.1								
		${ }_{180.4}^{11}$	$\begin{aligned} & 2991 \\ & 29654 \\ & 3004 \end{aligned}$	$\begin{gathered} 3009 \\ 180.4 \\ 179.4 \\ 17 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 2800 \\ & 3009 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 180.4 \\ & 179.9 \end{aligned}$	$\begin{gathered} 0 \\ 2920 \\ 3030 \end{gathered}$	$\begin{gathered} 0 \\ 179.9 \\ 180.4 \end{gathered}$	$\begin{gathered} 0 \\ 2991 \\ 3177 \end{gathered}$
	${ }_{2996}^{2640}$	176.8							
	3370								
nc 0.1	0.1	0.045							
			2994	300			0		
${ }_{\text {GR } 186.5}$	2893	186.3	2993	185.85	299				
${ }_{\text {GR }}^{\text {GR }} 1886.38$	2998.331	1185.76	3000.		3002.265		3004.351	186.	
	0.1	0.045							
${ }^{\mathrm{X} 136000}$									
GR^{182},	2640	180.5	${ }_{2605}^{265}$	180.5	2800	180.5	${ }^{2920}$	180	${ }_{2991}$
GR 176.9 GR 181	2996 3370	176.9	3004	179.5	3009	180	3035	180.5	3175
nc 0.1	0.1	0.045							

$\begin{aligned} & \text { GR } 178.1 \\ & \text { GR } 177.2 \\ & \text { GR } 180.5 \end{aligned}$	$\begin{aligned} & 2993 \\ & 306.1 \\ & 3060 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 178.1 \\ 177.2 \\ 181 \end{array} \end{aligned}$	$\begin{aligned} & 2993.1 \\ & 3906.2 \\ & 3220 \end{aligned}$	$\begin{aligned} & 177.2 \\ & 178 \\ & 181 \end{aligned}$	$\begin{aligned} & 2993.9 \\ & 3007 \\ & 3300 \end{aligned}$	$\begin{aligned} & 177.2 \\ & 178 \\ & 181.5 \end{aligned}$	$\begin{aligned} & 2999 \\ & 3007.1 \\ & 340 \end{aligned}$	$\begin{aligned} & 177.2 \\ & 179.9 \end{aligned}$	3000 3009
; High--hord transect for bridge 40573.5 (River: Little River; Reach: Gouin to DS end).									
is is		section.							
$\times 140573.5$	нс	12	0	0	0.0	0.0	0		
GR 182.5	2730	182.6	2750	183	2920	183	2993	183.8	2993
${ }_{\text {GR }}^{\text {GR } 183}$	2994 3009	183 181		183.8		183.8			
; This is a Repeated section. $\begin{array}{lll}\text { NC } 0.1 & 0.1 & 0.045\end{array}$									
$\times 140824$			2993.	3006.	0.0	0.0	0		
182.5	2730	180	2750	180	282	18	2920	179	
178	2993	178.	2993.	177.2	2993	177		177	
GR 177	3006	177.2	${ }_{3006 .}$	178	3007	178	3007	179	
GR 180.5	3060	181	3220	181	330				
nc 0.1	0.1	0.045							
			2994	3001.712	0.0				
$\mathrm{GR}_{\text {GR }} 188.18$	${ }_{2}^{2893}$	186.9	${ }_{2}^{2993}$	186.575	${ }_{3094}$	185.38	2996 3102	184.838	
GR 185.18	2999.93	186.677	3001.7	86.9	3002	187			
nc 0.1	0.1	0.045							
${ }_{\text {X1 }}^{\text {C1 }} 181106$		${ }_{181.5}^{16}$	${ }_{2}^{2950.3}$	${ }^{2965.7}$		${ }_{181.3}^{0.0}$		${ }_{179} 17$	
GR 177	2954.36	177.3	2961.64		2965.7				3045.5
		181.1	${ }^{3203}$	181.2	3308	181.5	3413	181.8	
0.	0.1								
GR 187.	2893	186.9	2993	186.75	2994	185.322	2995.817	184.846	2997.
GR 185.1	2999	186.801	3002.	186.9	3003	187.			
wc 0.1	0.1	0.045							
$\times 142000$		16	2989						
${ }^{\text {GR }} 183$	2860	${ }^{181.5}$	2880	180.7	295	181	2983	179	
GR 177.3	2994.8	177.3		179.4					
${ }_{\text {GR }}^{\text {GR }} 182.181 .3$	3220 4700	181.1	3350	181.2	3500	181.5	3650	181.8	4000
43	${ }^{8}$	8.	2994	3001.12		0.0	0	0	

GR 187.2 GR 186.865	$\begin{aligned} & 2893 \\ & 3001.123 \end{aligned}$	$\begin{array}{r} 1877 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 2993 \\ & 3002 \end{aligned}$	$\begin{aligned} & 186.941 \\ & 187.2 \end{aligned}$	$\begin{aligned} & 2994 \\ & 3102 \end{aligned}$	84.889	2995.	185.528	998
nc 0.1	0.1	0.045							
X1 44			${ }_{2}^{2994}$	${ }^{3003.375}$	0.0	${ }^{0.0}$	${ }_{20}{ }^{\circ}$	0	\bigcirc
$\mathrm{GR}_{\text {GR }} 1888.2$	${ }_{2999.884}^{2893}$	187.8 187.8	${ }_{3003.375}^{2993}$	${ }^{187.6} 188$	2994 3103	18	2997.03	185	998.
HLocation of TwinNc 0.10.10.1									
${ }_{\text {GR }} 183$	26	${ }_{182}$	${ }_{2680}^{2989}$	${ }_{181} 18$	2790	180.5	2820	180	2840
1177	${ }_{3006}^{2800}$				${ }_{3010}^{2989}$.		${ }_{3060}^{2991.5}$	177	${ }_{3150}^{2993}$
GR 181.2	${ }_{3250} 300$	181.2	${ }_{3350} 308$.	181.4	3600.	181.7	4000	${ }_{182.2}^{181}$	4600
(loction of Twin oaks Drive Structure									
$\times 14432$		20	2989.8	3010.4	0.0	0.0	0	0	
GR 183	2660	182	2680	181 180	${ }_{2989}^{2790}$	${ }_{178}^{180 .}$	2820	180	${ }_{2940}^{2893}$
GR 177.	3006.2	178.9	3008.5	180.		178.	2991.	181	
GR 181.2	3250	181.2	3350	181.4	3600	181.7	4000	182.2	4600
GR 183.2		${ }^{20}$	2680	181.2	2790	180.7	2820	180	284
GR 181.2	2860	181.2	2950	180.2	2989.8	179.1	2991.5	177	2993
GR 177.7	${ }_{3}^{3006.2}$	179.1		${ }_{181.6}^{180.3}$	3010.4 3600	181.2		181.2	
GR 181.4		181.4	3350	181.6		181.9	4000	182.4	
nc 0.1	0.1	0.045							
X1 GR 187				2999.9	0.0	0.0			
GR ${ }_{\text {GR 187.5 }}$	${ }_{3000}^{2894}$	187.7	${ }_{3100}^{2994}$	185.8					
$\times 145100$		20	2989.8	3010.4	0.0	0.0			
GR 183.4	2660	182.4	2680	181.4	2790	180.9	2820	180	
GR 181.4	2860	181.4	2950	180.4	2989.	179.3	2991	177	2993.
GR 177.9	3006.2	179.3	3008.5	180.5	3010.	181.4	3060	181	3150
GR 181.6	3250	181.6	3350	181.8	3600	182.1	4000	182.6	4600

NC	0.1	20		3010.4	0.0	0.0			
GR 183	2200	${ }_{182}$	${ }_{2250}^{2989}$	${ }_{181} 3010.4$	2300	${ }_{181}$	2825	${ }_{181}$	2840
GR 181	2860	181	50	180	2989.8	178.9	2991.5	178.2	2993.6
GR 178	3006	178.9	8.5	180.1	3010.4	181		181	3150
GR 181.2	3250	181.2	3350	181.4	3600	181.	4000	182.	4600
nc 0.1	0.1	0.0							
$\times 146$			${ }_{2}^{2994}$	3001.45	0.0	0.0		${ }^{0}$	
GR 187.8	3001.45	${ }_{188.1}^{188.1}$	${ }_{3008.62}^{2948}$	186	${ }_{3109}^{2996006}$		2996.766		
${ }^{\text {nc }} 0.1$	0.1	0.045							
¢ ${ }_{\text {C1 }} 4848$		${ }_{181}^{18}$	${ }_{2250}^{2995}$	${ }^{3005.7} 181$					
GR 181	2992	${ }_{181}^{181}$	2992.1	178.9	2995	178.9	2995.1	178.4	3000
178	3005	178.4	3005.7	181	3008		3008.1		3025
GR 181	3200	181	3600	182	425				
$\begin{array}{lll}\text { Nc } & 0.1 \\ \text { X1 } & 46203\end{array}$		0.045							
184		18	2250	${ }_{181}$	2500	${ }^{181}$	2700	${ }_{181}^{01}$	
GR 181	2992	181	2992.1	178.9	2995	178.9	2995.1	178.4	3000
GR 178.	3005.6	178.4	3005.	181	3008	181	3008.1	181	3025
GR 181	3200	18	360	182	425				
nc 0.1	0.1	0.045							
X146304		18	2992.1	3008	0.0	0.0			
${ }_{\text {GR }}^{\text {GR }} 181818$	${ }_{2}^{2240}$	${ }_{181}^{181}$	${ }_{29250}^{2250}$	181 178.9	2500 2995	181 188.9	${ }_{2995}^{2700}$	${ }_{1781}^{181}$	50
GR 178	30	178.	3005.7	181	3008				3025
GR 181	3200	181	3600	182	4250				
; Upstream	ttl	ver an	ine	junctio					
	0.1	. 045							
GR 184.79	2894	${ }_{184.59}$	${ }_{2}^{2994}$	${ }_{\text {3011.01 }}^{384}$	0.0997 .573	${ }_{184.23}^{0.0}$	2998.34	${ }_{182.32}$	30
GR 181.23	3003.576	181.24	3004.4		3005.132	182.32	3006.611	184.39	3011.01
GR 184.59	3011.5	184.79	3111						
710	0.1	. 045							
			2766.47	2771.6					
GR 6 GR 180.98	${ }_{2}^{22406.4}$	180.9	${ }_{2245}^{2247}$	180.9	${ }_{2768} 24$	180.9	${ }_{2762} 27$	${ }_{188.9}^{180.9}$	${ }_{2}^{2667}$

GR 178. GR 180.	$\begin{aligned} & 2775.92 \\ & 2912 \end{aligned}$	$\begin{aligned} & 178.3 \\ & 180.9 \end{aligned}$	$\begin{aligned} & 2775.99 \\ & 3192 \end{aligned}$	$\begin{aligned} & 180.9 \\ & 181.9 \end{aligned}$	${ }_{3647}^{2777 \cdot 6}$	180.9	. 67	180.9	2789.5
wc 0.1	0.1	0.045							
$\times 148$			2994	3008.902	0.0	0.0	0	11	
184.75	2894	184.55	2994	184.4	2995.178	182.28	2999.297	181.47	3001.13
$\begin{aligned} & G \mathrm{GR} \\ & \mathrm{GR} 184.43 \\ & \mathrm{GR} 184.75 \end{aligned}$	$\begin{aligned} & 301.905 \\ & 3109 \end{aligned}$	5181.57	3002.728	8 184.31	3006.35	184.41	3008.902	4.55	
0.1	0.1	0.045							
48500		14	2992	3008	0.0	0.0	2010	0	0
184.9	2300	181.4	${ }^{2310}$	181.4	${ }^{2650}$	181.4	2810	181.2	50
GR 1880.9 GR 180.9	2980 3035	${ }_{181.1}^{180.7}$	${ }_{3150}^{2992}$	178.2 181.5	${ }_{3500}^{2997}$	${ }_{188.2}^{178 .}$	3003 4000	180	
${ }_{49}^{0.1}$	0.1	0.045							
185.26	2894	185.06	2994	184.94	${ }_{2997.328}$	184.76	2997.913	181.84	${ }^{0} 004.357$
$\begin{array}{ll} \mathrm{GR} & 181.69 \\ \mathrm{GR} & 185.26 \end{array}$	$\begin{aligned} & 3004.762 \\ & \mathbf{3} 117 \end{aligned}$	281.81	3005.941	1184.42	3008.955			185.06	
vc 0.1	0.1	0.045							
		16	2991	3009	0.0				
184	22	18	2300	181.5	2525	181.5		181.5	
181.3	2850		2925		2991	178.2	2996.7	178.2	3003.3
	3009	181.2	3075	181.4	3140	181.5	3250	181.6	3450
182	4000								
vc 0.1	0.1	0.045							
		20	2952	2971.34	0.0	0.0		0	
	2280 2850	${ }_{182}^{182}$	2290 2950 295	${ }_{181.2}^{181.2}$	${ }_{295}^{2300}$	181.1		181	
181	${ }_{2}^{2850} 0$	181	2950	${ }_{181}^{181.3}$	${ }_{3050}^{2952}$	180.1	${ }_{\substack{2959.032 \\ 3150}}$		2961.8
180.1 181.6	${ }_{3450}^{2964.914}$	181.2 181.9	${ }_{3750}^{2971.34}$	181 182	3050 4000	181.1 182.4	3150 4650	181.3 182.9	3250 5500
$\begin{aligned} & 0.1 \\ & 50 \end{aligned}$	0.1	${ }_{10}{ }_{10} .045$	\%						
GR 185.5	2894	185.3	2994	185.2	2997.059	184.9	2998.084	182.8	3003.
GR 182.3	3004.059	181.7	3007.922	184.8	3009.343	185.3	3010	185.5	
is is	EATED	section.							
50350			2991	3009					
184	2295	181.5	2300	181.5	2525	181.5	2700	181.5	2800
${ }_{\text {GR }}^{\text {GR }} 1881.3$	2850	${ }^{181.1}$	${ }_{3}^{2925}$	181	2991	178.2	2996.7	178.2	3003.3
									3450

; High-chord transect for bridge 58.76 (River: 7th Concession D; Reach: 7th Concession).
;CORIED SECTION FROM SEC 58

NC 0.1									
$\begin{array}{lll}\text { X1 } \\ \text { GR } & 55 \\ 187\end{array}$			2994 2994	${ }_{\text {chen }}^{3001.572} 185.38$	${ }_{2995.71}$	0.0 185	${ }_{2996.6}^{0}$	${ }_{185.2}^{0}$	${ }_{2997.64}^{0}$
GR 187.2	3001.572								
nc 0.	0.1	0.045							
${ }^{\times 1} 56$			2994	3001.675	0.0	0.0	0		
188.	2893	8,	2993	187.66	299				
186.66	2999.	187.999	3001.	188.5	3002				
NC 0.1	0.1	0.045							
$\times 157$			2994	3008.541	0.0	0.0	0		
${ }_{\text {GR }}^{68} 188$	2893	188.7	2993	187.8	299	187.088	2998.	186.	
	0.1	0.045							
			2994	3008.551				0	
	${ }_{3008.551}^{2594}$	${ }_{188.555}^{188.96}$	2994 3408	187.7	2998.05	187.701	2999.828	187.8	3002.52
GR 188.565	3008.551	188.96	3408						
$\begin{array}{cccc}\text {; COPIED } & \text { SECTION } & \text { FROM SEC } 58 \\ \text { NC } & 0.1 & 0.1 & 0.045\end{array}$									
			2994	3008.551					
$\begin{array}{ll}\text { GR } & 189.5 \\ \text { GR } & 188.3\end{array}$	${ }_{3002.522}^{2894}$	$\begin{aligned} & 189.3 \\ & 189.065 \end{aligned}$	$\begin{aligned} & 2993 \\ & { }_{3008.551} \end{aligned}$	${ }_{1}^{189.05}$	2994 3009	$\begin{aligned} & 188.2 \\ & 189 \end{aligned}$	2998.0 310	188.201	2999.828
${ }^{\mathrm{X} 1} 58.7$			2994	3008.	0.0		0		
GR 194.1	2894	193.905	2994	189	2998	193.	2999.828	193.15	3002.522
GR 193.915	3008.551	194.11	3108						
	0.1	0.045							
	2594	${ }^{3} 194.4$	${ }_{3347.324}$	${ }_{4}^{0} 194.46$	${ }_{3408}^{0.0}$	0.0	0	0	0
$\begin{array}{ccc}\text {; Copied } & \text { SECTION } & \text { FRoM SEC } \\ \text { NC } & 58 \\ \text { NC } & 0.1 & 0.1\end{array}$									
GR 194.45					2998	-193.201	\%		3002.52
GR 194.065	${ }_{3008.551}^{2504}$	194.46	3408				2999.828	193.3	3002.5

nc 0.1	0.1	0.045					$\begin{array}{ll} 0 & 0 \\ 2500 & 181.7 \\ 3001.177 \\ 31790 & 179 \\ 3900 & 182 \\ 3900 \end{array}$		$\begin{gathered} 0 \\ 2700 \\ 3007.135 \\ 3105 \end{gathered}$
		${ }_{182}^{19}$	$\begin{array}{r}2994 \\ 203 \\ \hline\end{array}$	${ }^{3015.8}$	0.0	0.0			
GR 181.9	2850	181.6	2950	181.6	2994	179.6			
GR 179.8	3009.548	181.4	3015.8	181.5	3050	181			
GR 182.3	3180	182.6	3370	182.7	3600	182.9			
nc 0.1	0.1	0.045							
$\times 180$			2994	3000.4	0.0	0.0	${ }_{2996.175}^{0} \quad{ }_{186.5}^{0}$		${ }_{29} \mathbf{0} 97.781$
	2893			188	29				
GR 187.1	2998.638	188.1	3000	188.	3001	189			
Nc 0.1	0.1	. 045					$\stackrel{0}{096.891}{ }^{0} 187.6$		$\stackrel{0}{2997}$.
			2994	2999.293	. 0	0.0			
GR 188.9	2594	188.5		187.7	2996.045	187.			
GR 188.5	2999.293	188.9	3399						
NC 0.1	0.	. 045					${ }_{2995.925}^{0} \quad \stackrel{0}{187.6}$		${ }_{2996.651}$
			2994	2998.552	0.0	0.0			
${ }_{\text {GR }} 1888.8$					2995.499				
GR 188.4	2998.552								
NC 0.1	0.1	. 045							${ }_{2998.696}$
${ }_{\text {Cl }}^{\text {K1 }} 188.9$	2594	188.5	2994 2994	${ }_{3}^{3001.561} 18.6$	${ }_{2994.908}$	${ }_{187.1}^{0.0}$	$\stackrel{0}{2997.794}$	${ }^{0} 8$.	
${ }_{\text {GR }}^{\text {GR } 188.5}$	${ }_{3001.561}^{2594}$	188.9 18.9	${ }_{3401}^{294}$						
	0.1	. 045					2994.0343100310		${ }_{2994.987}$
			2994	2999	. 0	0.0			
GR 189.5		189.3	2993	188.711					
GR 188.45	2996.398	188.711	2999	189.3	3000	189.5			
Nc 0.1	0.1	. 045					$\begin{aligned} & 0 \\ & \begin{array}{c} 094.583 \\ 2997.54 .525 \\ 299746 \\ 18.58 .35 \end{array} \end{aligned}$		$\begin{gathered} 0 \\ 2995.032 \\ 297.967 \end{gathered}$
K1 81			2994	2997	. 0	0.0			
GR 189.3	2893	相	2993	188.336		188.366			
$\mathrm{GR}_{\text {GR 189 }} 18.4$	2995.	186.791	299	11	299	88.3			
GR 189									
nc 0.1	0.1	045					$\begin{gathered} 0995.171 \\ 187.546 \\ \hline \end{gathered}$		${ }_{2996.074}$
${ }_{\text {K1 }} 1888$			${ }_{29}^{2993}$	${ }^{2998.364}$					
GR 187.711	2996.87	535	2993	18988	${ }_{2999}$	187.			
	0.1								
	2893		${ }_{2}^{2994}$	${ }^{3000.356}$	2994				2996
			2993	189.09		187.8	2995.		2996.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline GR 184.6 GR 184.6 \& $$
\begin{aligned}
& 3003 \\
& 3225
\end{aligned}
$$ \& 184.6
184.6 \& $$
\begin{aligned}
& 3003.1 \\
& 3425
\end{aligned}
$$ \& 184.5
184.6 \& $$
\begin{aligned}
& 3006 \\
& 3770
\end{aligned}
$$ \& ${ }_{185}^{184.6}$ \& 3050
4000 \& 184. \& 3170

\hline \multicolumn{10}{|l|}{$\begin{array}{lll}\text { i Little River at Twin Oaks } \\ \text { NC } & 0.015 & 0.015 \\ \text { O. } & 0.015\end{array}$}

\hline GR 181 \& 0 \& 180.8 \& 60 \& 180.8 \& 80 \& 181 \& 160 \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \&

\hline GR 184 \& 2295 \& 182.5 \& 2300 \& 182.5 \& 2525 \& 182.5 \& 2700 \& 182.5 \& 2800

\hline GR 182.5 \& 2850 \& 182.5 \& 2925 \& ${ }^{182.5}$ \& 2990. 29 \& 182.5 \& ${ }_{3002}^{2991}$ \& 183.4
188.4

18. \& ${ }_{2}^{2991.1}$

\hline $\begin{array}{cc}\text { GR } & 183.4 \\ G R & 183.4\end{array}$ \& 2992.6
30074 \& $\begin{array}{ll}6 & 183.4 \\ 4 & 183.4\end{array}$ \& 2992.7

3007.5 \& 183.4 \& ${ }_{3}^{2996.6}$ \& \begin{tabular}{l}
183.4

183.4

\hline

 \& ${ }_{3}^{3002.1}$ \&

183.4

182.5

\hline 18.5
\end{tabular} \& 3003.4

3009

\hline GR 182.5 \& 3075 \& 182.5 \& 3140 \& 182.5 \& 3250 \& 182.6 \& ${ }_{3450}$ \& 182.9 \& 3650

\hline GR 183 \& 4000 \& 183 \& 4650 \& 183 \& 5500 \& \& \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \&

\hline GR 181 \& 4 \& 181 \& 5.5 \& 179.4 \& 13.5 \& 179.4 \& 17.5 \& 178.2 \& 22.

\hline GR 178. \& 25.5 \& 177.2 \& 30.5 \& \& \& \& \& \&

\hline GR 177 \& 39.5 \& 177.2 \& ${ }^{41} .3$ \& 179 \& 49 \& 179 \& 51.5 \& 180 \&

\hline GR 181 \& 67.5 \& 18 \& 69 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \&

\hline ${ }_{\text {X1 }}^{\text {X1 }}$ Twi \& 16 \& 17 \& 43.5 \& 45 \& 0.0 \& 0.0 \& 0 \& 0 \&

\hline GR 181 \& ${ }^{6}$ \& 181 \& \& 178.5 \& \& 178. \& 29 \& 178.5 \&

\hline ${ }_{\text {GR }}^{\text {GR 177.5 }} 17$ \& 35
53 \& 177.4 \& 39
57 \& 177.4
178.5 \& 43.5
58.5 \& 177 \& ${ }_{63}^{44}$ \& 177.4 \& ${ }_{75}^{45}$

\hline GR 181 \& ${ }_{85}$ \& 181 \& 92 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{$\underset{\substack{\text { Thwin Oak Buisiness } \\ \text { NC } 0.1 \\ 0.1}}{\text { Park Stat }}$}}

\hline \& \& \& \& \& \& \& \& \&

\hline GR 181.6 \& 2.5 \& 181.6 \& \& 179.9 \& 12 \& 179.8 \& , \& 178.8 \& 21.5

\hline ${ }_{\text {GR }}^{\text {GR 177.7 }} 1$ \& ${ }_{36.8}^{24}$ \& 177.9
179.6 \& ${ }_{44.5}^{29}$ \& \& \& \& 32.5
54.5 \& 1771.9
181.1 \& - ${ }_{55}^{33.5}$

\hline GR 181.6 \& ${ }_{63}$ \& 181.6 \& 64.5 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \&

\hline ci \& \& 0.5 \& 1 \& 0 \& мо \& \& \& \&

\hline
\end{tabular}

5060 5060	Storage	${ }_{2}^{0}$	37211 50360
5065 5065	Storage	${ }_{2}^{0}$	51900 69569
5070 5070	Storage	${ }_{2}$	33882 46007
5073 5073	Storage	${ }_{2}^{0}$	${ }_{392624}^{28724}$
5075 5075	Storage	${ }_{2}$	32728 4498
5080 5080	Storage	${ }_{2}$	${ }_{1201} 12425$
$\begin{gathered} 5085 \\ 5085 \\ \hline 0 \end{gathered}$	Storage	${ }_{2}$	${ }_{31531}^{22812}$
5087 5087	Storage	${ }_{2}$	50395 67601
5090 5090	storage	${ }_{2}$	15066 21402
5095 5095	Storage	${ }_{2}$	32809 44604
$\begin{aligned} & 5100 \\ & 5100 \\ & 510 \end{aligned}$	storage	${ }_{2}$	16388 23130
5105 5105	Storage	${ }_{2}$	17765 24931
5110 5110	Storage	${ }_{2}$	15140 21499
5115 5115	Storage	$\stackrel{0}{2}$	26706 36623
5125 5125	sto	${ }_{2}$	${ }_{40351}^{2957}$

5130 5130	storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 37637 \\ & 50917 \end{aligned}$
$\begin{aligned} & 5133 \\ & 5133 \end{aligned}$	Storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 35074 \\ & 47566 \end{aligned}$
$\begin{aligned} & 5135 \\ & 5135 \\ & 515 \end{aligned}$	Storage	0	$\begin{aligned} & 6656 \\ & 10403 \end{aligned}$
$\begin{aligned} & 5140 \\ & 5140 \\ & 510 \end{aligned}$	Storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 17819 \\ & 25002 \end{aligned}$
$\begin{aligned} & 5145 \\ & 5145 \\ & 515 \end{aligned}$	Storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 33029 \\ & 44892 \end{aligned}$
$\begin{aligned} & 5155 \\ & 5155 \\ & 51 \end{aligned}$	Storage	0	$\begin{aligned} & 22536 \\ & 31170 \end{aligned}$
$\begin{aligned} & 5165 \\ & 5165 \\ & 5165 \end{aligned}$	Storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 54873 \\ & 73457 \end{aligned}$
$\begin{aligned} & 5175 \\ & 5175 \end{aligned}$	Storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 17966 \\ & 25194 \end{aligned}$
; Control Twin 5180 5180	ks flows Storage	$\begin{aligned} & \text { exis } \\ & 0 \\ & 2 \end{aligned}$	ates 20000 20000
$\begin{aligned} & 5185 \\ & 5185 \\ & 5185 \end{aligned}$	Storage	2	$\begin{aligned} & 20799 \\ & 28899 \end{aligned}$
$\begin{aligned} & 5190 \\ & 51990 \\ & 5190 \end{aligned}$	Storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 26315 \\ & 36112 \end{aligned}$
$\begin{aligned} & 5200 \\ & 5200 \end{aligned}$	Storage	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	${ }_{239329}^{181716}$
$\begin{aligned} & 5210 \\ & 5210 \end{aligned}$	Storage	2	$\begin{aligned} & 21243 \\ & 29480 \end{aligned}$
$\begin{aligned} & 5215 \\ & 5215 \end{aligned}$	Storage	2	$\begin{aligned} & 35210 \\ & 47744 \end{aligned}$
$\begin{gathered} \text { [TTMESERIES] } \\ ; ; \text { Name } \end{gathered}$	Date	Time	Value

\qquad
شَ

	L
	ㅇozozo
	ONNN工NJ
¢8:88:888:88:88:88:88:88:888:88:88:8	\%\%\%\%\%\%\%
-0.0	
	Migjomio

$100 \mathrm{yr}-24 \mathrm{hr}-\mathrm{chi+}$	$12 / 14 / 2011$
12	

[tags]
[MAPI
DTMENS ToNS
UNITTS
[Coordinates]
 8.83084069503604-15.1842304473221
None 23.7571876936715 2.55315070351585
x-Coord .--Y-Coord
-9.575
-9.1 ---------

18.794
17.708
19.478
17.411
18.879
19.633

-6.167
-6.049
0.607

が

o

Upper Little River Model.
A1 slopes are assumed to be 0.158 (from Turkey Creek and Little River subwatershed Study
Ald
A11 slopes are assumed to be 0.158 (fro
Dillon Consulting Limited, June 1998).
$* *$
NoTE The summary statistictics displayed in this report are
based on results found at every computational time step,

Analysis options

Flow Units ...	CMs
Process Models:	
Rainfal1/Runo	yes
Snowmelt	
Groundwat	No
Flow Routing	YES
Ponding Allowed	YES
Water Quality	
Infiltration Method	GREEN AMPT
Flow Rout ing Method	DYNNA
Starting date	DEC-14-2011 00:00:00
Ending Date	DEC-17-2011 00:00:0
Antecedent Dry days	0.0000
Report Time step	1:00
wet Time step	00:05:
Routing Time s	,

NARNING 04: minimum elevation drop used for Conduit a varning 03: negative offset ignored for Link clo Varning 03: negative offset ignored for Link c10 Warning 04: minimum elevation drop used for conduit c10 varning 04: minimum elevation drop used for Conduit c12

WARNING 03: negative offset ignored for Link C15 WARNING 04: minimum elevation drop used for Conduit C22 WARNING 04: minimum elevation drop used for Conduit C2 WARving 04: minimum elevation drop used for Conduit c2 WARNING 04: minimum elevation drop used for Conduit c25 WARNING 04: minimum elevation drop used for Conduit c2 WARNING 04: minimum elevation drop used for Conduit c2 WARNING 04: minimum elevation drop used for conduit C 28 WARNING 04: minimum elevation drop used for Conduit C2 WARNING 04: minimum elevation drop used for Conduit C3 WARNING 04: minimum elevation drop used for Conduit C3 WARNING 04: minimum elevation drop used for Conduit c3 WARNING 04: minimum elevation drop used for Conduit c3 WARNING 03: negative offset ignored for Link c34 WARNING 04: minimum elevation drop used for Conduit C34 WARNING 03: negative offset ignored for Link C 37 WARNING 03: negative offset ignored for Link C38 warning 04: minimum elevation drop used for conduit C WARNING 04: minimum elevation drop used for conduit c6 WARNING 03: negative offset ignored for Link C6025a WARNING 03: negative offset ignored for Link C6055a WARNING 03: negative offset ignored for Link c6120a WARNING 03: negative offset ignored for Link C6120b

WARNING 03: negative offset ignored for Link C6120 wARNING 03: negative offset ignored for Link c61200 WARNING 03: negative offset ignored for Link C61200 Warning 03: negative offset ignored for Link C6135 wARNING 03: negative offset ignored for Link C6135a warning 04: minimum elevation drop used for conduit c6135a wARNING 03: negative offset ignored for Link C6135b WARNING 03: negative offset ignored for Link C6135 warning 04: minimum elevation drop used for conduit c6135b warning 03: negative offset ignored for Link C6150 warning 04: minimum elevation drop used for conduit c6160a wARNING 03: negative offset ignored for Link C6180a warning 03: negative offset ignored for Link 66220 warning 03: negative offset ignored for Link C7025 WARNING 04: minimum elevation drop used for Conduit C7025 vaRNING 04: minimum elevation drop used for Conduit ca WARNING 03: negative offset ignored for Link pl warning 03: negative offset ignored for Link or2090-1 vaRning 03: negative offset ignored for Link or2100-1 warning 03: negative offset ignored for Link or2200-1 waRning 02: maximum depth increased for Node Ji warning 02: maximum depth increased for Node J109 wARNING 02: maximum depth increased for Node J11

Warning 02: maximum depth increased for Node J11 WARNING 02: maximum depth increased for Node J12 WARNING 02: maximum depth increased for Node J13 WARNING 02: maximum depth increased for Node J 14 Warnivg 02: maximum depth increased for Node J15 WARNING 02: maximum depth increased for Node J16 WARNING 02: maximum depth increased for Node J17 WARNING 02: maximum depth increased for Node J18 WARNING 02: maximum depth increased for Node 119 WARNING 02: maximum depth increased for Node J2 WARNING 02: maximum depth increased for Node J20 WARNING 02: maximum depth increased for Node J21 WARNING 02: maximum depth increased for Node J22 WARNING 02: maximum depth increased for Node J23 WARNING 02: maximum depth increased for Node J24 WARNING 02: maximum depth increased for Node J25 WaRNING 02: maximum depth increased for Hode 38 WARNING 02: maximum depth increased for Node J27 WARNING 02: maximum depth increased for Node J28 WARNING 02: maximum depth increased for Node J29 wARNING 02: maximum depth increased for Node J3 WRRNING 02: maximum depth increased for Node J30 Warning 02: maximum depth increased for Node J31
warning 02: maximum depth increased for Node J32 warning 02: maximum depth increased for Node J33 Warning 02: maximum depth increased for Node J34 wARNING 02: maximum depth increased for Node J36

NARNING 02: maximum depth increased for Node J3750
warning 02: maximum depth increased for Node J4032
VARNING 02: maximum depth increased for Node $J 41$
wARNING 02: maximum depth increased for Node J4110
arning 02: maximum depth increased for Node J4
NARNING 02: maximum depth increased for Node J4
warning 02: maximum depth increased for Node J4
warning 02: maximum depth increased for Node J5
warving 02: maximum depth increased for Node J54
WARNING 02: maximum depth increased for Node J5
WARNING 02: maximum depth increased for Node J57
VARNING 02: maximum depth increased for Node J6
warning 02: maximum depth increased for Node J60 Meving 02: maximum depth increased for Node J6 WARNING 02: maximum depth increased for Node J warning 02: maximum depth increased for Node J80 Warning 02: maximum depth increased for Node J81 warning 02: maximum depth increased for Node J 82 wARNING 02: maximum depth increased for Node J83

WARNING 02: maximum depth increased for Node J88
WARNING 02: maximum depth increased for Node J89
WARNING 02: maximum depth increased for Node J9
WARNING 02: maximum depth increased for Node J92
WARNING 02: maximum depth increased for Node J98
WARNING 02: maximum depth increased for Node J99

Highest Continuity Error
Node ${ }^{2} 55(10.628)$
Node $J 55.5(4.638)$
Node J26 (2.088)

Node J110 (1.908)
Time-Step Critical B
Link C22
Link C32
(45.598)
Link
(45.68)

Link C12 ${ }^{(11.648)}$
Link $C 7025(1.058)$

$\underset{*+* ~}{\text { Highest }}$

Link C6180e (
fink $\mathrm{C1}$
(2)

Link OR2190-1
Lirnn or210-1
Lin
Link OR2215-1
(2)

Minimum Time Step
Average Time Step

0.96 se
1.58 se
30.00 se
0.00
2.01

Subcatchment	$\begin{gathered} \text { Total } \\ \substack{\text { Precip } \\ \text { min }} \end{gathered}$	$\begin{gathered} \text { Total } \\ \begin{array}{c} \text { Roton } \\ \text { Runon } \end{array} \end{gathered}$	$\begin{gathered} \substack{- \text { Totalal }_{\text {Eotap }}^{\text {Eap }} \\ \text { min }} \\ \hline \end{gathered}$		$\begin{gathered} \text { Total } \\ \text { Runoff } \\ \text { Run } \end{gathered}$		$\begin{gathered} -\cdots-\boldsymbol{c}^{\text {Peak }} \\ \text { Runoff } \\ \text { CMM } \end{gathered}$	${ }_{\substack{\text { Runoff } \\ \text { coeff }}}$
00	108.	0.	0.	17.22	90.41	82.62	12.52	0.8
2002	108.17	0.00	0.00	17.91	89	140.28	19.13	
${ }_{2007}^{2005}$	108.17	0.00	0.00	15.03	92.71	${ }^{44.54}$	${ }^{10.50}$	0.85

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

S.

为

Nod	pe	Average Depth	Maximum Meters	Maximum HGL	$\begin{aligned} & \text { Time } \\ & \text { Time } \\ & \text { ocuy } \\ & \text { days } \end{aligned}$	$\begin{aligned} & \text { of Max } \\ & \text { rurence } \\ & h x: m i n \end{aligned}$
${ }^{1}$	Junction	0.67	1.14	186.14	0	11：15
${ }^{310}$	TIoN	1.61	44	181.26		16：13
J108	JUNCT ToN	1．53	${ }_{2}^{2.24}$	180		18：28
T11	Juncr Ton	1．93	${ }_{1} 1.64$	180.28		44
J110	Juncrion	1．83	2.73	180.83	O	
${ }^{111}$	JUNCTION	1.66	2.53	180.83	0	
${ }^{12}$	Junction	1.51	2.39	181.49	0	15：41
		0.74		183.67	0	12：40
J14	Junction	1.30	2.10	182.16	0	14：13
15	Junction	1.29	2.08	182.26		14：02
116	Junction	1.26	2.02	182.53	0	13：34
J17	Junction	2.01		180.18		18：27
J18	Junction	1.08		183.72		12：37
19	Jonciron	0.10	1.20	184.40		11：42
J2	Junction	2.06	2.96	180.83		：29
J21	Jucrion	5	析			
521	swirol	9，	析			
，	－wicrov	9，	析	相		（48
T29	Twiction	1．09	2．48	181.15		（29
J25	Juncrion	0．22	${ }_{1}^{2.73}$	188.88		18：23
J26			1.36	188.36		10：50
			1.63	184.03	0	109：35
	JUNCTITON	0.6	1.71	185.11		59
	JUNCTİN	0.54	1.67	186.07		52
	JUNCTİN	0.44	2.64	183.59		09：19
	Junction	0.52	1.99	187.39		08：40
J31	Junction	0.41	2.05	188.45		08：23
J32	Junction	1.32	1.41	180.41		17：40
J3	Juncrion	1.54	2.08	180.83		32
	Junction	0．35	0.64	184.04		09：38
	Jonction	0.55	1.19	180.99		02
Ј36	Junction	1.18	1.92	182.83		13：08
	nction	，	3.15			08：53
5390	Sucrion	2．11	3.01	179.81		17：15
J39	Juncrion	${ }_{2} .21$	${ }_{3.16}$	183.98 180.26	0	12：06

Node	Type	$\begin{aligned} & \text { Maximum } \\ & \text { Materal } \\ & \text { Inflow } \\ & \text { Cows } \end{aligned}$	$\begin{gathered} \text { Maximum } \\ \text { Tntal } 1 \text { Infle } \\ \text { CMS } \end{gathered}$	Time of Max Occurrence days hr：min	$\begin{array}{r} \text { Lateral } \\ \text { Inflow } \\ \text { Volume } \\ 10 \wedge 6 \text { 1tr } \end{array}$	
${ }^{1}$	junction	0.000	6.882	11：02		503.522
${ }^{3} 10$	Junction	0.000	23.405	14：32	0.000	1947.849
${ }^{\mathrm{JJ} 108}$	JUNCT I ON JUNCT T	0.000 0.000	0.735 0.700	14：08	0.000 0.000	97.770 98.390
${ }^{11}$	JUNCTION	0.000	6.847	11：42	${ }_{0} 0.000$	502.731
${ }^{3110}$	JUNCTITN	0.000	2.260	13：12	0.000	114.924
J111	Junction	0.000	1.806		0.000	94.580

.o.
 OO.

${ }_{1.00}$

W2185	WEIR	0.000	0	$00: 00$	0.00
WW290	WERR	0.000	0	00000	0.00
W2200	WER	0.000	0	00000	0.00
W2210	0.000				
W2215	WER	0.000	0	00000	0.00
WEIR	0.000	0	$00: 00$	0.00	

How Classification sumary

Conduit	$\begin{array}{r} \text { Adjusted } \\ \text { /Actual } \\ \text { Length } \end{array}$	Dry	$\begin{aligned} & \text { Fract } \\ & \text { Dry } \end{aligned}$	$\begin{aligned} & \text { on of of } \\ & \text { Don } \\ & \text { Do } \end{aligned}$	$\begin{aligned} & \text { Time i } \\ & \text { Sub } \\ & \text { Crit } \end{aligned}$	$\begin{aligned} & \text { n } \begin{array}{l} \text { fup } \\ \text { sup } \\ \text { Crit } \end{array} \end{aligned}$	$\begin{aligned} & \text { Up lass } \\ & \text { Cr } \\ & \text { Cry } \end{aligned}$	$\begin{aligned} & \text { Down } \\ & \text { Critit } \end{aligned}$	$\begin{aligned} & \text { Avg. } \begin{array}{c} \text { Froude } \\ \text { Numberer } \end{array} \end{aligned}$	${ }_{\text {Avg }}^{\text {Avow }}$ Change
${ }_{\text {c1 }}$	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.09	0.0000
C10	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	10	0.0000
${ }^{\text {c11 }}$	1.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00	0.12	0.0000
${ }^{\text {c12 }}$	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.06	0.0000
${ }^{\text {c13 }}$	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.09	0.00
${ }^{\text {c14 }}$	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.21	0.0000
${ }_{\text {C15 }}{ }_{\text {c15 }}$	${ }_{1}^{1.00}$	0.01	0.01	0.00	0.98	0.00	0.00	0.00	${ }^{0.02}$	0.0000
${ }_{\text {C17 }}^{\text {C17 }}$	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.14	0.0000 0.0000
C18	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.19	0.0000
${ }_{\text {c12 }}{ }^{\text {c19 }}$	1.00 1.00 1.0	0.00 0.00	0.00 0.00	0.00 0.00	- 1.00	0.00	0.00 0.00 0	0.00	0.15 0.03	0.0000 0.0000
c20	1.00	${ }_{0} 0.02$	0.00	0.00	0.78	0.00	0.00	0.20	${ }_{0.07}^{0.07}$	${ }^{0} 0.00000$
${ }^{\text {c21 }}$	1.00	0.02	0.00	0.00	0.97	0.00	0.00	0.00	0.06	0.0000
${ }_{\text {c23 }}$	${ }_{1}^{1.00}$	0.00 1.00	${ }^{0.00}$	0.00 0.00 0.0	1.00 0.00	-	-	-	. 46	20000
c24	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
c25	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
${ }^{2} 26$	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
${ }^{2} 27$	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C29	1.00	1.00	${ }_{0} 0.00$	0	0	0.00	0.00	0	${ }_{0}$	-0.0000
c3	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
с30	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.23	0.0001
${ }^{\text {c31 }}$	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
C32	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.04	0.0000
C34	1.00	${ }_{0.00}$	0.00	0.00	1.00	0.00	0.00	0.00	${ }_{0} .24$	0.0000
C35	1.00	0.00	0.00	0.00	1.00	0.	0.00	0.00	0.05	0.00

APPENDIX I

 Hydraulics1603-11265 Upper Little River
Flood Elevations
2017-09-01

Road	ERCA Floodplain Mapping By MacLaren (1985)		Twin Oaks Business Park		Current PC-SWMM model						Survey Data			
			by Lafontaine,	etc. (1997)	Existing			Proposed						
	100 yr Water Level (m)	Flow (m ${ }^{3} / \mathrm{s}$)	100 yr Water Level (m)	Flow (m ${ }^{3} / \mathrm{s}$)	100 yr Water Level (m)	Change in WL relative to ERCA (m)	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	100 yr Water Level (m)	Change in WL relative to ERCA (m)	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & \text { Ground } \mathrm{u} / \mathrm{s} \\ & \text { of road } \\ & \text { crossing }(\mathrm{m}) \end{aligned}$	Road Spill (m)	Road at Crossing (m)	Proposed Conditions Flooding (m)
Baseline Road	184.04	24.4			184.13	0.09	34.7	183.67	-0.37	24.4	183.9	184.3	184.5	-0.2
Country Road 42	182.63	24.4			183.20	0.57	39.8	181.95	-0.68	23.9	182.2	182.6	182.9	-0.3
Lauzon Parkway	182.12	24.4			182.52	0.40	40.1	181.49	-0.63	23.6	182.2	182.3	183.7	-0.7
Lauzon Road	181.72	27.7			182.01	0.29	43.7	181.21	-0.51	23.2	181.3	181.6	182.0	-0.1
Railway	181.56	34.0	181.13	39.4	181.64	0.08	45.4	180.85	-0.71	24.1	181.1	182.4	182.4	-0.3
Twin Oaks Drive	180.91	39.5	180.86	39.6	180.97	0.06	49.5	180.28	-0.63	25.8	180.5			-0.2
E.C. Row Expressway	180.72	42.8	180.77	40.5	180.81	0.09	50.6	180.18	-0.54	26.8	180.0	181.4	183.0	0.2
Forest Glade Drive	180.39	42.8			180.41	0.02	51.4	179.84	-0.55	27.4	179.5	180.5	181.0	0.3

Location	ERCA Floodplain Mapping By MacLaren (1985)		Twin Oaks Business Park by Lafontaine, etc. (1997)		$\begin{array}{\|l\|} \hline \text { Current Study } \\ \hline \text { By Stantec (2017) } \\ \hline \end{array}$			Elevation Data				
			Windsor Airpor	t (1990)								
	100 yr Water Level (m)	Flow (m ${ }^{3} / \mathrm{s}$)			100 yr Water Level (m)	Flow (m ${ }^{3} / \mathrm{s}$)	100 yr Water Level (m)	Change in WL relative to ERCA (m)	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	$\begin{aligned} & \text { Ground } \mathrm{u} / \mathrm{s} \\ & \text { of road } \\ & \text { crossing }(\mathrm{m}) \end{aligned}$	Road Spill (m)	Road at Crossing (m)
Baseline Road	184.04	24.4			184.13	0.09	34.7	183.9	184.3	184.5		
Country Road 42	182.63	24.4			183.20	0.57	39.8	182.2	182.6	182.9		
Lauzon Parkway	182.12	24.4			182.52	0.40	40.1	182.2	182.3	183.7		
Lauzon Road	181.72	27.7			182.01	0.29	43.7	181.3	181.6	182.0		
Railway	181.56	34.0	181.13	39.4	181.64	0.08	45.4	181.1	182.4	182.4		
Twin Oaks Drive	180.91	39.5	180.86	39.6	180.97	0.06	49.5	180.5				
E.C. Row Expressway	180.72	42.8	180.77	40.5	180.81	0.09	50.6	180.0	181.4	183.0		
Forest Glade Drive	180.39	42.8			180.41	0.02	51.4	179.5	180.5	181.0		

Proposed								
Road	Current PC-SWMM model				Survey Data			
	Existing		Proposed					
	100 yr Water Level (m)	Flow (m ${ }^{3} / \mathrm{s}$)	100 yr Water Level (m)	Flow (m ${ }^{3} / \mathrm{s}$)	$\begin{aligned} & \text { Ground } \mathrm{u} / \mathrm{s} \\ & \text { of road } \\ & \text { crossing }(\mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { Road Spill } \\ & (\mathrm{m}) \end{aligned}$	Road at Crossing (m)	Proposed Conditions Flooding (m)
Baseline Road (J5090/J82)	184.13	34.7	183.67	24.4	183.9	184.3	184.5	-0.2
Country Road 42 (J5110/J92)	183.20	39.8	181.95	23.9	182.2	182.6	182.9	-0.3
Lauzon Parkway (J12)	182.52	40.1	181.49	23.6	182.2	182.3	183.7	-0.7
Lauzon Road (J9)	182.01	43.7	181.21	23.2	181.3	181.6	182.0	-0.1
Railway (J24)	181.64	45.4	180.85	24.1	181.1	182.4	182.4	-0.3
Twin Oaks Drive (J46102)	180.97	49.5	180.28	25.8	180.5			-0.2
E.C. Row Expressway (J17)	180.81	50.6	180.18	26.8	180.0	181.4	183.0	0.2
Forest Glade Drive (J5)	180.41	51.4	179.84	27.4	179.5	180.5	181.0	0.3

APPENDIX J

Fluvial Geomorphology

2500, Meadowpine Blvd. Suite 200	Address
Mississauga, Ontario, L5N 6C4	
Canada	
$(905) 877-9531$	Telephone
$(905) 877-4143$	Fax
www.parishgeomorphic.com	Internet

Document Title:	Sandwich South Employment Lands - Upper Little River Existing Conditions
Status:	Draft Report
Version:	01
Date:	December 2012
Project name:	Sandwich South Employment Lands
Project number:	$01-11-46$
Client:	Stantec
Reference:	$01-11-46 / 01-$ draft

Drafted by: Tatiana Hrytsak, M.Sc
Checked by: Benjamin Swanson, PhD
Date checked: December 10, 2012
Approved by: John Parish P.Geo.
Date of approval:

Contents

1. Introduction 1
2. Background Review 2
3. Synoptic Surveys 11
3.1 Rapid Assessment 11
4. Meander Belt Width Assessment 16
4.1 Meander Belt Width Delineation 16
4.2 Preliminary Meander Belt Width 16
4.3 Erosion Setbacks 17
5. Detailed Field Data Collection 24
5.1 Monitoring Cross-Section Sites $(2004,2007,2011)$ 24
5.2 Detailed Sites (2007) 35
5.3 Erosion Threshold Analysis 40
6. Restoration/Remediation Opportunities 42
7. Conclusions 44
8. References 46
Appendix A: Photographic Record of Reaches 47

1. Introduction

Property is currently being developed for mixed land uses in Windsor between Highway 401, the E.C. Row Expressway, Walker Road, and Banwell Road. Due to the proposal for future development and the anticipated decrease of permeable surfaces in the watershed, a geomorphic assessment was required. This study builds upon a previous report from 2004, in which, a detailed desktop analysis of the study area was conducted and monitoring cross-sections were installed to establish a baseline of conditions in the area. This study entails:

- A field reconnaissance of the study area using rapid channel assessments to confirm the findings of the background review. The site reconnaissance also serves to identify and confirm any physical rates of channel adjustments;
- Establishment of meander belt widths;
- Detailed geomorphic field assessments including collection of cross-sectional and survey data and re-monitoring of the historic channel cross-sections established in 2004;
- Detailed geomorphic analyses to determine erosion threshold assessments;
- Restoration recommendations for the channels areas;

2. Background Review

In 2004/2005, a desktop analysis was initially conducted to determine the general characteristics of watercourses in the study area. The amount and size of sediment inputs, valley shape, land use or vegetation cover, and other parameters that influence channel form often change as you move downstream along a waterway. In order to account for these changes, channels are often separated into "reaches". Reaches can be defined as stretches of channel that flow through a nearly constant valley setting and incorporate similar physical characteristics along their lengths. Thus, reaches experience similar controlling and modifying influences, which are reflected in similar geomorphological form, function, and process. Watercourses within the subject area were divided into reaches, as illustrated in

Figure 2.1. Reach lengths were measured and are provided in Table 2.1.

The study area is located in the physiographic region known as the St. Clair Clay Plain which contains both the Essex and Lambton Clay Plains. Little River is located on the Essex Clay Plain which ranges in thickness from 30 to 60 meters (Chapman and Putnam, 1984). The till is described as clayey-silt and glaciolacustrine clay. The underlying bedrock surface consists of sedimentary rocks such as limestone and dolostone. Some small areas of glaciolacustrine sand are also found bordering Little River, but the Quaternary geology of the area is primarily till. Two tills have been identified in the area, Catfish Creek and the overlying Tavistock till.

A historic analysis was also conducted for each reach using aerial photographs from 1955 and 1978 as well as digital imagery from 2004 to document changes in land use and channel planform. It was noted that the surrounding land use was predominantly agriculture and most of the study reaches had been altered or straightened - most before 1955. A description of observed changes is outlined in Table 2.2. Seven monitoring cross-sections were installed following the desktop assessment in order to establish baseline conditions within the study area. An initial draft of the current document was prepared in 2007, but it did n not include meander belt information or erosion threshold values.

Table 2.1: Summary of delineated reaches and measured lengths.

Watercourse Name	Reach	Length (m)
Little River	LR-2	1865.33
	LR-3	1208.62
	LR-4	1181.89
	LR-5	378
	LR-6	1383.74
Little River Drain	LRD-1	754.38
	LRD-2	922.33
	LRD-3	407.62
	LRD-4	1282.56
Rusette Drain	RD-1	1218.19
	RD-2	4010.88
McGill Drain	MD-1	1249.44
	MD-2	645.53
	MD-3	1821.31
Lappan Drain	LD-1	1979.61
	LD-2	870.43
Rivard Drain	RID-1	NA
Lachance Drain	LAD-1	1362.32
Desjardein Drain	DD-1	2151.23
Soulliere Drain	SD-1	1582.87
	SD-2	666.03
Baseline Road Drain	BRD-1	682.37
Ninth Concession Drain	NCD-1	2228.24
Sixth Concession Drain	SCD-1	1053.01
	SCD-2	1027.2
	SCD-3	1516.11
Hurley Relief Drain	HR-1	992.97

Figure 2.1: Delineated reaches and locations of monitoring cross-sections and detailed fieldwork.

Table 2.2: Historical Analysis Summary

Watercourse Name	Reach Name	Land Use Change	Channel Change
Little River	LR-1	1955-agricultural on both banks, some residential development on western side of channel	1955 - straightened prior to this date, no observable bar formations or islands
		1978 - significant increase in residential development along western side of channel, also increase in residential development on eastern side of channel, nursery located on eastern side of channel has matured from 1954	1978 - channel still straight, no apparent changes in channel form or function, vegetation has matured along top of banks
		2004 - no coverage for this reach	2004 - no coverage for this reach
	LR-2	1955-agricultural on both banks with a little residential land use on the western bank	1955 - straightened prior to 1954 with no bar formations or island apparent
		1978 - significant increase in residential development along the western bank, development of water treatment facility on eastern bank, lots of vegetation removed when development occurred	1978 - no apparent change in channel form, still straight with no bars are islands, no additional road crossings constructed since 1954
		2004 - no coverage	2004 - no coverage
	LR-3	1955-mainly agricultural with a few crossings and associated buildings	1955 - appears to have been altered prior to 1954, engineered
		1978 - increase in the amount of industrial land use with associated parking lots and impermeable surface, some agricultural land use still being worked	1978 - does not appear to be any significant changes in channel form since 1954, no increase in bar formations or islands of any kind
		2004 - incomplete mapping available, no apparent changes in land use except for a small increase in the amount of residential development present since 1978	2004 - because of the incomplete coverage it is hard to distinguish if channel changes have occurred

LR-4	1955 - land use appears to be a golf course with very little bank coverage	1955 - channel appears in natural state with no straightening obvious
	1978 - land use remains a golf course, vegetation has grown in and was maintained, minor increase in residential development near upstream portion of reach break	1978-no change in channel form, no new crossings added, vegetation more mature on banks
	2004 - remains a golf course, no apparent change in land use or increase in residential development past 1978	2004-no apparent change in channel form, no straightening or engineering obvious from photo
LR-5	1955 - mainly agricultural land use with associated out buildings	1955 - no evidence of channel alterations prior to 1955
	1978 - remains agricultural land use with a little more vegetative cover compared with 1954	1978 - channel does not appear to have been changes since 1955, no increase in crossings etc.
	2004 - change in land use from agricultural to parkland and residentia/commercial with a new crossing constructed prior to 2004	2004 - channel appears to have been straightened slightly since the installation of the new crossing and change to parkland
LR-6	1955 - mostly agricultural land use along both banks, some forested area on the western bank	1955 - channel appears in natural state with only on road crossing in centre of reach
	1978 - land use changed to a golf course prior to 1978 aerial photograph with associated buildings and parking area, few new residential buildings as well	1978 - channel does not appear to be altered however there were at least 6 new cart path crossings over the watercourse prior to 1978
	2004 - land use changed again to industrial with associated large impervious areas (parking lots and buildings) with the removal of the road crossing in centre of reach, and removal of foot bridges installed for the golf course prior to 1978	2004 - channel appears to have been altered/engineered prior to 2004, cart path bridges have been removed, road crossing present in existing years has been removed, and the banks look to be armoured/altered throughout most of the reach

Little River Drain	LRD-1	1955 - agricultural land use through all of reach	1955 - channel appears to be in natural state with no bar formations or islands, some erosion along outside of meander bends obvious
		1978 - mainly agricultural land use with a slight increase in the residential development along western portion of the watercourse	1978 - does not appear to be any changes in channel form, erosion still evident on outside of meander bends, no bar formations or islands obvious
		2004 - agricultural remains the dominant land use with no increase in the residential development along watercourse	2004 - no apparent change in channel form noted, no increase in erosion along bends, no obvious signs of bar formation or islands
	LRD-2	1955-mainly agricultural land use with some scrub forest in upstream portion of reach	1955 - channel appears to have been altered prior to 1955, more like a drain through agricultural fields
		1978 - mainly agricultural land use with an obvious increase in the maturity of the scrub forest in the upstream portion of the reach	1978-no apparent change in channel form but most of reach obscured by vegetation and poor quality of aerial photograph
		2004 - mixture of agricultural land use and forested area with the construction of a new road along the forested area, also a slight increase in the residential land use along this reach	2004 - no apparent change in channel form except for the installation of the new road crossing prior to 2004
	LRD-3	1955-mainly agricultural lands inter-mixed with some scrub forest to road crossing	1955 - downstream portion of the reach appears to have been altered prior to 1955, upstream portion appears natural
		1978 - land use remained agricultural with a slight increase in the density of the scrub forest prior to 1978	1978 - no apparent change in the channel form from 1955, only addition of a new crossing in the downstream portion of reach
		2004 - no apparent change in the land use for this reach, the forest continued to increase in density	2004 - no apparent change in channel form from 1978
	LRD-4	1955 - majority of the reach is surrounded by agricultural land use with some scrub forest	1955 - channel appears in natural state but may be ephemeral with an undefined channel through the upstream portion of the reach
		1978 - remained agricultural	1978 - channel appears to have been straightened and now flows along the roadway
		2004 - remained agricultural	2004 - no apparent change in channel form since 1978
Baseline RoadDrain	BRD-1	1955 - not apparent in aerial photograph	1955 - if present it appears to flow along the roadside as a ditch
		1978 - not obvious in aerial photograph	1978 - if present flows along roadside as a ditch

		2004 - agricultural land use for entire reach	2004 - flows along the roadside as a ditch with no apparent changes in channel form
9th ConcessionDrain	NCD-1	1955 - not apparent	1955 - channel ditches prior to 1955
		1978-not apparent	1978-no apparent changes in channel form
		2004 - mainly agricultural land use with the roadside and residential land uses as well	2004 - no apparent changes in channel form, a roadside ditch
6th ConcessionDrain	SCD-1	1955 - mainly agricultural with roadside and residential development as well	1955 - channel straightened into roadside ditch prior to 1955
		1978-mainly agricultural with residential and infrastructure, no apparent change from 1955	1978 - no obvious change in channel form since 1955
		2004 - no apparent change from 1955	2004 - no obvious change in channel form since 1955
	SCD-2	1955 - mainly agricultural land use with residential back yards fronting onto watercourse	1955 - channel appears to have been altered prior to 1955, into a drainage channel along the backside of the residential properties
		1978 - no aerial photo coverage of this reach	1978 - no aerial photo coverage of this reach
		2004 - remained agricultural for the most part with a slight increase in infrastructure (road crossing) prior to 2004	2004- no obvious changes in channel form except the road crossing
	SCD-3	1955-no aerial photo coverage	1955-no aerial photo coverage
		1978 - no aerial photo coverage	1978 - no aerial photo coverage
		2004 - surrounding land use is agricultural	2004 - ditched prior to 2004, straightened channel into ditch
Hurley Relief Drain	HR-1	1955- no aerial photo coverage	1955- no aerial photo coverage
		1978-no aerial photo coverage	1978 - no aerial photo coverage
		2004-mixture of agricultural, residential/parkland and water storage facilities	2004 - nothing to compare the channel to, however it does appear to have been altered prior to 2004 into a drainage feature
Rusette Drain	$\begin{aligned} & \text { RD-1 } \\ & \text { and RD- } \\ & 2 \end{aligned}$	1955 - mainly agricultural lands with a few road crossings and a nursery in the upstream end of the reach, airport was just being build so there was some clearing of the lands surrounding the channel for this development	1955 - appears to have been a dug ditch prior to this aerial photograph
		1978 - surrounding land use remained agricultural with road crossings and the rail line, airport runway now fully developed, nursery in the upstream area of the reach was removed and	1978 - channel appears as a well defined ditch with little vegetation around banks

		scrubland now in its place, large reservoir was constructed on the north side of RD-2	
		2004 - only a small portion of the channel remains agricultural, now a lot of residential development built up along the ditch in the upstream portion of the channel on the northern bank and the airport on the southern bank with some scrub meadow	2004 - not a lot of vegetation has grown in since the digging, development now right up to the top of bank of portions of the drain
Lappan Drain	$\begin{aligned} & \mathrm{LD}-1 \text { and } \\ & \text { LD-2 } \end{aligned}$	1955 - not well defined channel however land use is mainly agricultural in the area where the land looks wet	1955 - no defined channel clear in aerial photograph
		1978 - well defined channel that has been dug, ditched, , land use is mainly agricultural with some scrub forest in the upstream portion of the channel, few road crossings	1978 - well defined channel appears and dug prior to 1978
		2004 - now all agricultural lands, forest has been removed and all land receives run off from the airport	2004 - well defined channel, no apparent changes in channel planform from 1978
McGill Drain	MD-1	1955 - agricultural lands, with some scrub forest in the downstream portion	1955 - appears to have been ditched prior to 1955
		1978 - agricultural lands, and a golf course in the downstream portion	1978 - remains straightened without obvious changes to the planform
		2004 - remains agricultural with some urbanization in the form of industrial parklands in the downstream portion of the channel	2004 - channel is still straight with a few extra crossings over it, otherwise unchanged
	MD-2	1955-agricultural lands with little other vegetation present	1955 - Channel appears to have been ditched prior to 1955
		1978 - remains agricultural with some trees maturing on the banks	1978-no apparent changes in channel planform, banks have become more defined
		2004 - continues to be agricultural land use with a few trees and scrubland immediately adjacent to channel	2004 - very well defined drainage ditch but no apparent changes in channel planform
	MD-3	1955-agriculture appears to be the dominant land use but the channel is hard to see, mainly looks like a drainage swale	1955 - cannot make a lot of the channel out so it is assumed that the drainage was ditched after 1955
		1978 - agricultural land use dominates with a few scrub forest areas present along its length	1978 - channel ditched prior to 1978, well established with vegetation on the banks
		2004 - remains agricultural for extent of the reach	2004 - does not appear to be any channel changes from 1978
Rivard Drain	RID-1	1955 - mainly agricultural with some scrub forest	1955 - channel was ditches prior to 1955

		1978 - mainly agricultural with some scrub forest and new crossings	1978 - does not appear to be any channel changes since before 1955
		2004-a mixture of agricultural and scrub forest	2004 - channel remains straightened with no apparent changes in channel planform
Lachance Drain	LAD-1	1955 - mainly agricultural land use with a small portion of scrub forest at the confluence with Little River	1955 - channel appears to have been dug prior to 1955
		1978 - mainly agricultural land use with a small portion of the drain in the downstream end near the confluence located in a golf course	1978-downstream portion of the channel was altered when the golf course was built, prior to 1978, appears to be straightened and foot bridges cross over it
		2004 - the upstream portion is all agricultural land use but the downstream portion near the confluence is surrounded by scrubland and industrial parkland	2004 - upstream portion appears to not have been altered at all, however the downstream portion appears to have been moved prior to 2004 as there is now an industrial building where the channel used to be and the channel is no longer well defined in this area
Desjardein Drain	DD-1	1955 - agricultural land use dominated this reach with one road crossing	1955 - channel appears to have been ditched prior to 1955
		1978 - agricultural land use dominates with minor residential development and back yard, one road crossing	1978 - no apparent change in channel planform since 1955
		2004 -dominated by agricultural land use	2004-no obvious channel changes since before 1955
Soulliere Drain	SD-1	1955 - agricultural land use most dominant	1955 - channel not well defined in the upstream portion of the channel, downstream looks natural
		1978 - agricultural land use remains most dominant	1978 - channel more defined with clear banks in upstream portion and natural in the downstream portion
		2004 - remains agricultural throughout most of the channel	2004 - channel does not appear to have changes since 1978
	SD-2	1955 - agricultural land use is dominant	1955 - channel not well defined but portions that are visible appear to be ditched prior to 1955
		1978 - agricultural land use remains dominant	1978 - channel still not well defined in this photograph but portions of it remained ditched
		2004 - agricultural land use remains dominant	2004 - channel was well defined with clear banks, ditched throughout whole reach

3. Synoptic Surveys

3.1 Rapid Assessment

In order to provide insight regarding existing geomorphic conditions and document any evidence of active erosion, site visits were conducted in 2007. During the visit, channel conditions along the study reaches were evaluated using two established synoptic surveys: the Rapid Geomorphic Assessment and the Rapid Stream Assessment Technique.

Rapid Geomorphic Assessment

The Rapid Geomorphic Assessment (RGA) was designed by the Ontario Ministry of Environment (1999) to assess urban stream channels. It is a qualitative technique based on the presence and (or) absence of key indicators of channel instability such as exposed tree roots, bank failure, excessive deposition, etc. The various indicators are grouped into four categories representing specific geomorphic process: 1) Aggradation, 2) Degradation, 3) Channel Widening, and 3) Planimetric Form Adjustment. Over the course of the survey, the existing geomorphic conditions of each reach are noted and the presence or absence of the specific geomorphic indicators is documented. Upon completion of the field inspection, the indicators are tallied within each category and the subsequent results are used to calculate an overall reach stability index. This index value corresponds to one of three stability classes representing the relative degree of channel adjustment and (or) sensitivity to altered sediment and flow regimes (Table 3.1).

Table 3.1: RGA Classification

Index	Classification	Interpretation
≤ 0.20	In Regime or Stable (Least Sensitive)	The channel morphology is within a range of variance for streams of similar hydrographic characteristics - evidence of instability is isolated or associated with normal river meander propagation processes
$0.21-$	Transitional/Stressed (Moderately Sensitive)	Channel morphology is within the range of variance for streams of similar hydrographic characteristics but the evidence of instability is frequent
$\mathbf{0 . 4 0}$	In Adjustment (Most Sensitive)	Channel morphology is not within the range of variance and evidence of instability is wide spread

(Source: Ontario Ministry of Environment, 2003 - Appendix C3)

Rapid Stream Assessment Technique

The Rapid Stream Assessment Technique (RSAT; Galli, 1996) provides a purely qualitative assessment of the overall health and function of a reach in order to provide a quick assessment of local stream conditions and to identify and prioritize restoration needs on a watershed scale. This system integrates visual estimates of channel conditions and numerical scoring of stream parameters using six categories:

- Channel Stability
- Erosion and Deposition
- Instream Habitat
- Water Quality
- Riparian Conditions
- Biological Indicators

Once each condition has been assigned a score, values are totaled to produce an overall stream stability score, or health rating, based on a 50 point total. The recommended value is then categorized into one of three classes: low (poor health), moderate (moderate health), and high (good health).

- $<20 \quad$ Low (Poor Health)
- 20-35 Moderate
- $\quad>35 \quad$ High (Good Health)

Although the RSAT grades streams from a more biological and water quality perspective than the RGA, this information is still relevant within a geomorphic context. In general, the types of physical features that generate good habitat for aquatic organisms tend to represent healthy geomorphic systems as well (e.g., native fish may prefer a well established riffle-pool sequence with little fine material on the riffles, quality riparian conditions provide food and shade to streams, woody debris and overhanging banks provide habitat structure, etc).

Along with the above mentioned stream assessment protocols, the Evaluation, Classification and Management of Headwater Drainage Features: Interim Guidelines were taken into consideration in identifying the headwater drainage features. Bank and bed substrates, channel stability, morphology and any discharge points were noted during the field survey.

The results (Table 3.1) classified all the reaches included in the rapid assessments as either 'transitional/stressed' or 'in adjustment'. The main mode of adjustment is widening, followed by aggradation. These processes were indicated by woody debris jams, bank erosion/slumping, and bar formation. Reaches were characterized by common elements of urban channels such as road crossings, stormwater outfalls, and bank protection/modification. Evidence of modification and straightening was also prevalent, such as the steel walls bordering the downstream Little River reaches (LR-1 and LR-2). Channel dimensions were largest for the main channel reaches ranging from $6-30 \mathrm{~m}$ in bankfull width and 1-2.5 m for bankfull depth. While the drain reaches were much narrower, 2-8 m bankfull width, they were somewhat comparable in depth with a range of 0.3-1.2 m . This is indicative of the entrenchment that can occur in straightened agricultural drains.

Table 3.1: Summary of RGA results

Reach	Stability Index (RGA)	Condition (RGA)	Dominant Process (RGA)	Assessm ent Score (RSAT)	Stability Ranking (RSAT)	Bankiull Widith (m)	Bankiull Depth (m)	Comments
LR-3	0.41	In Adjustment	Aggradation Widening	22	Moderate	18-26	0.8-1.8	road crossings, weir, storm drainage, woody debris, sandbag with concrete lining on right bank, concrete cinder blocks on left bank, metal retaining wall acting as weir, lateral bar formation, channel migration to right bank
LR-5	0.29	Transitional/ Stressed	Widening	23	Moderate	6-12	0.8-1.6	tile drain, man-made riffles, slumped banks, road crossings, turbid, culvert, stagnant water, densely vegetated
LAD-1	0.34	Transitional/ Stressed	Widening	24.5	Moderate	3-6	0.6-1.2	culvert, road crossing and surrounding concrete drainage outfalls, failing concrete walls, channel highly entrenched, "U" shaped agricultural drain, little riparian cover, soft unconsolidated bed, ducks and 2 dead turtles
SD-1	0.29	Transitional/ Stressed	Widening Aggradation	---	---	2-4	0.3-0.6	culvert, confluence, cinder blocks, very little water, upstream vegetation controlled
DD-1	0.34	Transitional/ Stressed	Widening	24	Moderate	4-8	0.6-1.2	woody debris jams, densely vegetated, stagnant water not connected to main flow, channel appeared natural but altered
MD-1	0.26	Transitional/ Stressed	Aggradation Widening	22	Moderate	2-5	0.4-0.8	road crossings, rail line, riprap, woody debris jams, lined bed, very thin riparian corridor, channel flows as an altered drain through agricultural fields
LRD-4	0.3	Transitional/ Stressed	Widening	31	Moderate	4-6	0.6-1.2	road crossings, urban debris, tile drainage, right bank bridge abutment was exposed, wide straight reach with good riffle-pool delineation, majority of bed consisted of beach sands, ripples forming along bed, scour observed along rocks
LRD-1	0.3	Transitional/ Stressed	Widening Aggradation	27	Moderate	4-8	0.6-1	stormwater outfalls, urban debris, road crossings, gabions, man-made riffles, terra blocks, woody debris jams, two

								retention ponds, thatch on banks, urban debris, terraced banks
LR-6	0.31	Transitional/ Stressed	Aggradation	21	Moderate	6-15	0.8-1.2	vegetation controlled, road crossings, terra blocks, thatch on banks, vegetation in channel
LRD-2	0.31	Transitional/ Stressed	Widening	32	Moderate	4-6	0.6-1	road crossings, riprap, urban debris, erosion on banks, densely vegetated, thalweg out of alignment, bridge
LRD-3	0.26	Transitional/ Stressed	Widening	33	Moderate	4-7	0.6-1	road crossings, woody debris, terraced banks, erosion on banks, exposed roots
6th Concession	0.22	Transitional/ Stressed	Widening	26	Moderate	2-6	0.8-1.2	road crossings, urban debris, roadside ditch, basal scour on banks
Baseline Drain	0.34	Transitional/ Stressed	Widening	---	---	2-6	0.4-1.2	road crossings, bank slumping, islands in channel
LRD-5	0.32	Transitional/ Stressed	Widening	24	Moderate	2-4	0.4-0.8	road crossings, woody debris jams, densely vegetated, narrow straight drain with little bar formation, exposed clay along bank, exposed tree roots, leaning trees, groundwater seepage from right bank at crossing
9th Concession	0.26	Transitional/ Stressed	Aggradation Widening	22.5	Moderate	3-6	0.6-1.2	road crossings, woody debris jams, bar formations, extensive basal scour, roadside ditch, good riffle-pool spacing, numerous freeway crossings
LR-1	0.25	Transitional/ Stressed	Aggradation	30	Moderate	18-30	1.0-2.5	riprap, bridges, outfalls, steel wall, marine/docks, residential land uses, algae, overhanging vegetation
LR-2	0.22	Transitional/ Stressed	Aggradation	30	Moderate	17-25	1.0-2.0	road \& rail crossings, urban debris, outfalls, riprap, steel wall, stagnant water, sediment accumulation mid-channel

4. Meander Belt Width Assessment

4.1 Meander Belt Width Delineation

Streams and rivers are dynamic features on the landscape. Changes in configuration and position occur through the development and evolution of meanders, and migration processes. Erosion and deposition of sediment is a key component of channel migration, enabling changes in shape and shifts in the position of a watercourse. These changes may cause loss or damage to private property and/or structures located too close to the transitioning watercourse. It is for this reason that, when infrastructure, development or other activities are proposed near a watercourse, it is desirable to designate a corridor intended to contain all of the existing and expected meander development and migration processes. Outside of this corridor, it is assumed that private property and structures will be safe from the erosion potential of the watercourse. The space that a meandering watercourse occupies on its floodplain, and in which all of the natural channel processes occur, is commonly referred to as the meander belt. Due to the spatial variability of modifying and controlling influences on channel form, two reaches situated immediately up/downstream of each other could show marked differences in planform configuration. It is for this reason that meander belt width delineation occurs on a reach-by-reach basis.

4.2 Preliminary Meander Belt Width

A preliminary meander belt width was delineated for each reach in the study area (Table 4.2). Standard methods for delineating meander belt widths rely on air photo analysis. First, a meander belt axis was identified, following the general down-valley orientation of the meander pattern. The meander belt is essentially centered along the meander axis. Second, the preliminary meander belt is established by drawing lines parallel to the governing outermost meanders of the existing channel planform, following the meander axis. This methodology is not applicable when a channel has been altered or straightened, erasing any indication of natural planform configuration. Historical analysis of aerial photos revealed that most of the reaches within the study area have been altered and exhibit very little natural change in planform between 1955 and 2004. A small number of reaches retained planform characteristics which allowed the traditional methodology to be applied. These reaches are labeled 'planform' in Table 4.2.

In the event that a watercourse has been altered and/or necessary data is insufficient, a meander belt width can be derived by means of an empirical analysis based on channel parameters. This involves basic field data collection to quantify channel dimensions for use in calculating an appropriate belt width, such as channel width, depth, or cross-sectional area. The following selected equations (Table 4.1) provide an estimate of meander belt width dimensions. These empirical relations are based on measurements of real watercourses; however, their transferability to watercourses situated within southern Ontario maybe limited due to differences in hydrologic regime, drainage area, and general controlling factors compared to the areas where the formulas were developed. Reviewed collectively, they provide results that are typically comparable to results attained through use of the standard belt width delineation procedures. Because most of the channels in the study area are straight agricultural drains, the empirical method was used for the majority of the reaches. Where field data was not obtained, meander belt widths were estimated using similar, nearby reaches as references. Reaches that required this method are identified in Table 4.2 as 'reference’.

4.3 Erosion Setbacks

From a geomorphic perspective, the 100-year migration rate typically represents the erosion setback to be applied to either side of the meander belt width in order to account for bank erosion and channel migration over time (100 years). However, due to the high degree of planform alteration, 100-year migration rates could not be quantified for this channel. In lieu of applying the 100-year migration rate, an erosion setback representing 10% of the preliminary meander belt width was applied to either side of the channel. The preliminary and final belt width results are given in Table 4.2 and illustrated in Figure 4.1 - Figure 4.4.

Belt widths are the smallest for the agricultural drain reaches which are primarily draining headwater areas where small channel dimensions and relatively low gradients limit migration. These conditions results in belt widths between 24 to 35 m . Further downstream, some planform characteristics have been retained

(such as SD-3) and these channels have slightly larger belt widths to encompass a more sinuous pattern. The Little River drain reaches (LRD) have belt widths in the range of 40-80 m. The surrounding smaller drains converge with the LRD reaches providing more flow with which to alter channel dimensions resulting in the need for larger belt widths. The main channel reaches (LR) have belt width values that range from 100-200 m . These values result from the increased channel dimensions as well as some large meanders which have been preserved in the channel planform. While these meanders are unlikely to change significantly due to heavy alteration, they are indicative of the channels past migration based on its flow capacity.

Table 4.1: Empirical formulas for estimating meander belt width dimensions (Reach LAD-1 values provided as an example).

Meander Belt Empirical Analysis			
Source	Equation		Meander Belt Widith (m)
Williams (1986) - channel area $\left(\mathrm{m}^{2}\right)$	$18 \mathrm{cc}^{0.65}$	$=$	33.3
Williams (1986) - width (m)	$4.3 \mathrm{~W}^{1.12}$	$=$	22.0
Ward (2002) - width (ft) - no factor of safety	$4.8 \mathrm{~W}^{1.08}$	$=$	25.5
Lorenz et al. (1985) - width (m)	$7.53 \mathrm{~W}^{1.01}$	$=$	32.9
AVERAGE	$=$	28.4	
STANDARD DEVIATION	$=$	5.56	

Table 4.2: Summary of Meander Belt Width Results

Reach	Preliminary MBW	Final MBW for adjusted (add 10\% seitback	Method
LR-1	128	154	Reference
LR-2	128	154	Field
LR-3	120	143	Field
LR-4	85	102	Reference
LR-5	85	102	Field
LR-6	180	216	Planform
LRD-1	41	50	Field
LRD-2	50	60	Planform
LRD-3	50	60	Field
LRD-4	72	86	Planform
LRD-5	30	36	Planform
LAD-1	28	34	Field
DD-1	36	42	Field
SD-3	60	72	Planform
SD-1	20	24	Field
SD-2	20	24	Reference
RD-1	60	72	Planform
RD-2	23	30	Reference
MD-1	23	28	Field
MD-2	23	28	Reference
MD-3	23	28	Reference
LD-1	23	28	Reference
LD-2	23	28	Reference
RD-1	23	28	Reference
BRD-1	28	32	Field
NC-1	28	32	Field
SC-1	28	32	Field
SC-2	28	32	Reference
SC-3	28	32	Reference

Figure 4.1: Meander Belt Width Map - North Reaches

Figure 4.2: Meander Belt Width Map - Central and Eastern Reaches

Figure 4.3: Meander Belt Width Map - Western Reaches

Figure 4.4: Meander Belt Width Map: Southern Reaches

5. Detailed Field Data Collection

5.1 Monitoring Cross-Section Sites (2004, 2007, 2011)

Once the desktop analysis of the study area was completed in 2004, a monitoring program was established to track changes in the channels over time. This activity involved the installation of seven cross sections throughout the study area so that historical data could be collected. By monitoring the cross sections over a period of time, historical trends and channel changes can be observed and inferences can be made pertaining to development impacts on the watercourses in the subject area. The locations of the detailed sites were determined to provide a representative coverage of the study area, both from a spatial and morphologic perspective. Monitoring provides frequent, "low-tech" observations which enhance our understanding of a river system. It also enables direct measurements of a channel changes, such as bank erosion and bed scour, which can be linked to the historic assessment and provide a clearer picture of channel dynamics. The seven sites were located in Reaches LR-3, LRD-4, LAD-1, DD-1, BRD1, NC-1, and SC-1 (Figure 2.1). The cross-sections were benchmarked by installing monuments on the top of both banks such that topographic detail between the pins could be accurately measured on a recurring basis. The cross-sections were again measured in May 2007, but not all cross-sections could be relocated, in some cases, because maintenance along the drain had stripped or buried the monitoring pins. An attempt was also made in September 2011 to update the monitoring, but the field crew was only able to relocate one of the sites (NC-1). Below are brief descriptions of the general characteristics at each site and the results of the cross-section monitoring. If monitoring is planned for the future, new monitoring locations will need to be established at the sites.

Reach LR-3

Reach LR - 3 is situated in an urban parkland area surrounded by residential development and associated infrastructure. The banks were covered by reeds, trees, an understory of shrubs, and groundcover of grasses and herbaceous vegetation. Reeds extended into the channel along the right bank. There appeared to be a high flow channel along the right bank below the bankfull elevation that was dry during the site visit in December 2004. The estimated bankfull width was 18.20 m with a bankfull depth of 1.06 m .

The average water depth for this monitoring cross section was measured at 0.15 m with a wetted width of approximately 6.80 m . Channel substrate consisted of a mixture of gravel and pebble sized particles. During the 2004 site visit a medial bar was observed upstream of the monitoring cross section that was also composed of a gravel and pebble mixture. One erosion pin was installed in the right bank of the monitoring cross section to measure changes in bank stability and mobility over the course of the monitoring program. A wetland was also noted along the right bank of the cross section. Below, are some monumented photographs that were taken at this monitoring location (Figure 5.2). Comparison of the cross sections from 2004 and 2007 show only a minor change in shape (Figure 5.3). The right bank shows slight aggradation.

Figure 5.2: Example photographs for monitoring location at LR-3 (Dec 2004).

Figure 5.3: Monitoring cross section overlay for Reach LR-3.

Reach LRD-4

Reach LRD-4 is located in a residential parkland area with some commercial/industrial land use. This portion of Little River Drain appears to have been previously straightened as the channel has a wide ' U 'shape. The banks appeared to be eroding evidenced by exposed tree roots. Sparse vegetation was present on the banks during the site visit with little evidence of growth in the summer. The bank vegetation consisted of mature trees and shrubs growing out of a sand-silt soil. The soil appears to have been deposited during high flows. Channel substrate consisted of a pebble-sand-silt mixture with little-to-no channel vegetation present. Bankfull width was estimated to be 6.15 m with a depth of 0.67 m , and a wetted width of 4.04 m and depth of 0.20 m . There were no erosion pins installed at this monitoring cross section during the site visit. Below are the monumented photographs taken for this monitoring site (Figure 5.4). The channel bed has been elevated due to aggradation between the monitoring in December 2004 and May 2007 (Figure 5.5). Minor changes in bank shape support the contention that bank soil is being deposited during high flows.

Figure 5.4: Example photographs for monitoring location at LRD-4 (Dec 2004).

Figure 5.5: Monitoring cross section overlay for Reach LRD-4.

Reach LAD-1

Reach LAD-1 is a tributary of Little River known as Lachance Drain. It appears to be a straight, dug drainage ditch flowing through mainly agricultural land with some commercial/industrial land uses in the downstream portion. The downstream portion of the reach is also located near the rail line servicing the northern portion of Windsor. The channel appeared to be highly entrenched with a distinctive ' v '-shape to the valley. There was no noticeable bank erosion and the channel appears to convey low flows only. The bankfull width calculated for this site was 8.5 m with a bankfull depth of 0.78 m . The channel was at low flow during the site visit. The wetted width was 2.56 m with an average depth of 0.035 m . Bed substrate consisted of a mixture of silt and fine sands with a lot of vegetation (cattails) growing throughout most of the reach. Below are the monumented photographs taken for this monitoring cross section (Figure 5.6). Field crews were unable to relocate the monitoring cross section in 2007; therefore comparative cross section overlays cannot be shown (

Figure 5.7).

Figure 5.6: Example photographs for monitoring location at LAD-1 (Dec 2004).

Figure 5.7: Monitoring cross section overlay for Reach LAD-1.

Reach DD-1

This reach flows as an agricultural drain into the eastern edge of Little River upstream of Lachance Drain. The surrounding land use is dominated by agricultural fields and scrub lands. Bank vegetation consisted of trees, shrubs (raspberry bushes), and tall and short herbaceous vegetation. During the site inspection, there was sufficient woody debris in the channel to create barriers to flow and backwater. Bank erosion that extended to the top of bank in some areas was also noted along a portion of the reach. There did not appear to be a lot of under-story vegetation present near the monitoring cross section and the trees located along the bank did not appear to be leaning, suggesting that the bank erosion is slow. Channel substrate consisted of sandy silt to sand mixture. Estimated bankfull width for this monumented site was 5.1 m and the bankfull depth was 0.88 m . The wetted width observed for this site was 1.21 m with an average wetted depth of 0.07 m . One erosion pin was installed at this cross section in the left bank approximately 5 m downstream of the monitoring cross section. Monumented photographs for this reach can be found below (Figure 5.8). Field crews were unable to relocate the monitoring cross section in 2007; therefore comparative cross section overlays cannot be shown (Figure 5.9).

Figure 5.8: Example photographs for monitoring location at DD-1 (Dec 2004).

Figure 5.9: Monitoring cross section overlay for Reach DD-1.

Reach BRD-1

Baseline Road Drain (BRD-1) joins the Little River Drain near 6th Concession Road. The entire reach is surrounded by agricultural land and appears to flow as a drainage ditch along $6^{\text {th }}$ Concession Road. Bank vegetation consisted of a mix of shrubs with tall and short herbaceous vegetation. Channel substrate consisted of a mixture of fine sand and silt. There did not appear to be woody debris in the channel during this site visit. Bankfull was estimated to be 4.6 m width, with a depth of 0.59 m , a wetted width of 1.42 m and an average wetted depth of 0.19 m . Two erosion pins were installed at this monitoring cross section. The first was installed in the left bank approximately 2.0 m upstream of the monitoring cross section, and the other one was installed approximately 8.5 m downstream of the cross section. The photographs below illustrate the site characteristics (Figure 5.10). The site was re-measured in May 2007 (Figure 5.11). The changes in channel shape suggest that the ditch was cleaned out with the help of a backhoe. This is a standard practice in rural areas when municipal drains become overgrown with channel and bank vegetation.

Figure 5.10: Example photographs for monitoring location at LRD-4 (Dec 2004).

Figure 5.11: Monitoring cross section overlay for the Baseline Road Drain Reach 1.

Reach SC-1

This reach is the terminal section of the $6^{\text {th }}$ Concession Road drain before it becomes the Baseline Road Drain which ultimately flows into the Little River Drain. The surrounding land use for this portion of the $6^{\text {th }}$ Concession drain consisted mainly of residential development and associated infrastructure, with some agricultural land use still visible. The left bank of the channel abuts $6^{\text {th }}$ Concession Road. Bank vegetation consisted of a mixture of tall and short grasses and herbaceous vegetation with some trees and shrubs along the residential side of the channel. The left bank appeared to be slumping with some scars visible along the bank. Channel substrate consisted of a mixture of silt and fines. Observed bankfull width was 3.7 m with a bankfull depth of 0.43 m . The wetted width was not that deep during the site visit with a wetted width of 1.32 m and an average wetted depth of 0.12 m . Two erosion pins were installed at this monitoring cross section, one in the right bank and the other in the left bank, both immediately at the cross section. The monumented photographs taken for this reach are below (Figure 5.12). Cross-section measurement was repeated in May 2007 (Figure 5.13). Change in cross-sectional shape indicates slumping of the left bank and toe erosion of the right bank.

Figure 5.12: Example photographs for monitoring location at SC-1 (Dec 2004).

Figure 5.13: Monitoring cross section overlay for the Sixth Concession Drain Reach 1.

Reach NC-1

This reach flows along the $9^{\text {th }}$ Concession Roadway as a roadside ditch, before joining with $6^{\text {th }}$ Concession Drain (SC-1) and becoming the Little River Drain (LRD). Surrounding land use consists mainly of agricultural fields with some residential development and associated infrastructure. Bank vegetation consisted of a mixture of tall and short grasses and herbaceous vegetation. Channel substrate consisted of a pebble-sand mixture with some large boulders in the channel near the cross section. Bankfull width was estimated to be 4.3 m with a bankfull depth of 0.57 m . The wetted width from this cross section was observed to be 1.34 m width with an average depth of 0.12 m . There were no erosion pins installed at this monitoring cross section. The monumented photographs below highlight the findings for this reach (Figure 5.14). The cross section for Reach NC-1 was the only monitoring site that could be re-located in both 2007 and 2011 (Figure 5.15). Between December 2004 and May 2007 the channel appears to have been cleaned out creating more of a " U -shape". There also appears to have been some slumping along the left bank during that time period. The shape does not seem to have changed significantly between May 2007 and September 2011. The left bank has eroded to create a gentler bank profile, while the right bank has remained relatively stable.

Figure 5.14: Example photographs for monitoring location at ND-1 (Dec 2004).

Figure 5.15: Monitoring cross section overlay for the Ninth Concession Drain Reach 1.

5.2 Detailed Sites (2007)

Detailed work was carried out in May 2007 at five sites selected to provide representative coverage of the study area, both from a spatial and morphologic perspective. The selected reaches included Reach LR-2, LR-5, LAD-1, SD-1 and LRD-4 (Figure 2.1). Three of these sites were new to the study and two were already included as part of the monitoring program (LRD-4 and LAD-1). Detailed field assessments involved standard protocols and known field indicators used to quantify bankfull cross-sectional dimensions (e.g. bankfull depth and width) at five representative locations. A modified pebble count based on Wolman (1954) was used to characterize the surficial channel bed materials, whereby approximately 40 particles were randomly sampled and the length of the median axis was recorded. Sub-pavement materials were also characterized by separating a sub-surface sample qualitatively by particle size, and evaluating each fraction as a percentage of the overall sample. Note that the channel bed surface is defined
in thickness as two diameters of the largest sediments. In addition to noting bank characteristics, an in situ shear stress test was performed on bank materials. Finally, a level survey of the channel bottom and bankfull elevations provided a measure of the local energy gradient.

A description of each reach is provided below including general characteristics and bankfull geometry. Channel form is thought to be a response to the water and sediment supplied to the system, coupled with valley constraints, such as bedrock and vegetation. The bankfull channel dimensions (Table 5.1) likely formed to carry a certain discharge. Therefore, bankfull discharge and other important flow characteristics, including the main driver of sediment entrainment, shear stress (Table 5.2), can be estimated using channel gradient and bankfull channel cross-sections measured in the field.

Reach LR-2

Reach LR-2 is a straight, dug canal that leads into Lake St. Clair. There are berms that are built on both sides of the channel with retaining walls sporadically found throughout the reach. A storm outlet and floodgate contribute to flows in the channel during high flow periods. The bankfull width ranged from 18.47 m to 19.16 m with an average bankfull depth of 1.08 m . The banks were uniform in height at 4 m , composed of silt and clay supported by riprap or retaining walls. The water was relatively deep at time of measurement, with no defined pool-riffle sequences observed. The bed substrate varied from clay to riprap material, believed to have come from the riprap lining of the banks. The median grain size $\left(\mathrm{D}_{50}\right)$ was 5.30 mm and the D_{84} (ie., size where 84% of the samples are finer) was 49.28 mm . This indicates that while the substrate spans the range of clay to riprap most of the bed material is classified as pebbles/fine gravel with the largest material being mostly very coarse gravel. Average bankfull discharge is estimated to be $21.92 \mathrm{~m}^{3} / \mathrm{s}$ which moves at an average rate of $0.88 \mathrm{~m} / \mathrm{s}$, producing an average shear stress of $8.42 \mathrm{~N} / \mathrm{m}^{2}$.

Table 5.1: Average bankfull geometry results from the 5 detailed study sites

Cross-section Name:	SD-1	LAD-1	$L R D-4$	$L R-5$	$L R-2$
Bankfull Width (m)	2.59	4.34	5.39	7.72	18.84
Average Bankfull Depth (m)	0.34	0.59	0.57	0.85	1.08
Maximum Bankfull Depth (m)	0.51	0.89	0.78	1.05	1.51
Bankfull Width:Depth	7.71	7.31	9.52	9.23	17.52
Cross-sectional Area $\left(\mathrm{m}^{2}\right)$	0.89	2.55	3.12	6.60	20.96
Wetted Perimeter (m)	2.92	4.82	5.85	8.74	19.53
Hydraulic Radius (m)	0.30	0.52	0.53	0.76	1.07
Left Bank Angle $\left(^{\circ}\right)$	36.98	34.77	31.77	45.69	19.31
Right Bank Angle $\left(^{\circ}\right)$	31.43	29.57	30.25	54.24	22.81
Gradient	0.43%	0.11%	0.07%	0.06%	0.08%

Table 5.2: Average bankfull hydraulics results from the 5 detailed study sites

Cross-section Name:	$S D-1$	$L A D-1$	$L R D-4$	$L R-5$	$L R-2$
Bankfull Discharge $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	0.87	1.84	1.76	4.31	20.02
Average Bankfull Velocity $(\mathrm{m} / \mathrm{s})$	0.83	0.61	0.49	0.59	0.80
Maximum Bankfull Velocity $(\mathrm{m} / \mathrm{s})$	1.17	0.86	0.63	0.72	1.07
Average Shear Velocity $\left[\mathrm{u}^{\star}\right](\mathrm{m} / \mathrm{s})$	0.11	0.08	0.06	0.07	0.09
Stream Power $(\mathrm{W} / \mathrm{m})$	36.87	19.89	12.06	25.36	157.15
Stream Power per unit Width $\left(\mathrm{W} / \mathrm{m}^{2}\right)$	14.20	4.55	2.22	3.33	8.34
Average Shear Stress $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	12.82	5.66	3.64	4.46	8.42
Maximum Shear Stress $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	21.00	9.48	5.32	6.14	11.76
Left Bank Shear Stress $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	8.61	4.03	2.43	3.08	6.15
Right Bank Shear Stress $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	8.14	4.05	2.52	3.14	6.28
Critical Particle Diameter for Analysis (m)	clay	clay	0.0032	0.0057	0.0049
Hydraulic Roughness	0.035	0.035	0.035	0.035	0.035

Reach LR-5

Reach LR-5 was located in a parkland area behind residential buildings south of Forest Glade Drive and east of Lauzen Parkway. It is a straight reach with no natural pool-riffle sequences; however, there were some man-made riffle features at an outlet of a storm drain. The bankfull width ranged from 6.89 m to 9.90 m with an average bankfull depth of 0.85 m . The water was turbid at the time of the field investigation with nearly stagnant flow. The bed substrate was composed of clay to cobble within this range most

sediment was classified as very coarse sand as the median grain size was 4.0 mm . The larger material $\left(D_{84}\right)$ was classified as coarse gravel. The banks consisted of steep berms varying in height from 1 m to 4 m and were composed of clay, silt and very fine sand. The banks were heavily vegetated, but were experiencing basal scour (slumping) the length of the reach. There was urban debris found in the middle of the reach. The reach was heavily influenced by widening processes undermining the banks with basal scour leaving leaning/fallen trees and exposed roots. Average bankfull discharge is estimated to be 4.31 $\mathrm{m}^{3} / \mathrm{s}$ which moves at an average rate of $0.59 \mathrm{~m} / \mathrm{s}$, producing an average shear stress of $4.46 \mathrm{~N} / \mathrm{m}^{2}$.

Reach LAD-1

Reach LAD-1 was a man-made ditch draining the surrounding agricultural fields. The straight channel lacks natural features including riffle-pool sequencing and a meandering planform. The channel was very entrenched with a distinctive "U"-shape. The bank heights were fairly uniform averaging 2.8 m and were composed of silt and very fine sands. The bankfull width ranged from 3.56 m to 4.76 m with an average bankfull depth of 0.59 m . The bed composition varied from clay to very coarse sand. The bulk of the material is silt with a median grain size of 0.0068 mm and the largest particles are classified as coarse sand with a D_{84} of 0.098 mm . The banks support a thin grass cover while the channel is nearly free of vegetation. Several relatively new culverts drained into the reach. A concrete wall surrounding the culvert road crossing at the upstream end of the reach had failed and fallen into the channel. Significant evidence of basal scour, siltation and scour pools downstream of culverts suggest a reach that is heavily stressed. Average bankfull discharge based on channel dimensions is estimated to be $1.84 \mathrm{~m}^{3} / \mathrm{s}$ which moves at an average rate of $0.61 \mathrm{~m} / \mathrm{s}$, producing an average shear stress of $5.66 \mathrm{~N} / \mathrm{m}^{2}$.

Reach SD-1

Reach SD-1 was a man-made drainage ditch located amidst fallow agricultural fields. The channel was straight, turned only at right angles and was very entrenched. It lacked natural features like riffle-pool sequencing and a meander planform. The bankfull width ranged from 2.40 m to 2.97 m with an average bankfull depth of 0.34 m . The bank heights were fairly uniform averaging 1.8 m and were composed of
clay and silt. The bed composition varied from clay to gravel with a median grain size of 0.003 mm (clay) and a D_{84} of 0.326 (very fine sand). The upstream end of the reach was controlled by the abundant channel vegetation, which thinned out towards the downstream end. Water was located in isolated depressions in the bed. Average bankfull discharge based on channel dimensions is estimated to be 0.87 $\mathrm{m}^{3} / \mathrm{s}$ which moves at an average rate of $0.83 \mathrm{~m} / \mathrm{s}$, producing an average shear stress of $12.82 \mathrm{~N} / \mathrm{m}^{2}$.

Reach LRD-4

Reach LRD-4 was a relatively wide, straight drainage ditch. The bankfull width ranged from 4.47 m to 5.98 m with an average bankfull depth of 0.55 m . The banks varied in height from 1 m to 3 m and were composed of clay, silt and very fine sand. The bed composition varied from clay to gravel with sand dominant and sporadic cobble bars. The grain size distribution indicated that most material was classified as coarse sand with a median grain size of 0.56 mm . The larger fraction $\left(\mathrm{D}_{84}\right)$ consisted mostly of very coarse sand. The bed also had a well defined riffle-pool sequence. The channel was littered with urban debris. Based on cross-sectional dimensions, average bankfull discharge was estimated to be $1.62 \mathrm{~m}^{3} / \mathrm{s}$ which moves at an average rate of $0.47 \mathrm{~m} / \mathrm{s}$, producing an average shear stress of $3.52 \mathrm{~N} / \mathrm{m}^{2}$.

5.3 Erosion Threshold Analysis

In essence, an erosion threshold analysis determines the hydraulics, such as discharge, channel depth, or average channel velocity, at which the channel produces enough shear stress to initiate the mobilization of sediment of a give size, usually the D_{50}. The analysis also helps to evaluate a reach's erosion sensitivity by comparing the boundary shear stress associated with modeled flows to the critical shear stress required to entrain sediment. Nine different models were used to perform erosion threshold analysis for the Sandwich South Employment Lands, including models based on critical shear stress and permissible velocity, in order to consider a range of results. The model results were examined for convergence and compatibility with field observations. Selection of appropriate thresholds was also based on an understanding of site conditions and the assumptions and ranges of conditions under which the models are applicable.

The watercourses within the study area are mostly straightened constructed channels with relatively low gradients and finer bed materials. Providing erosion thresholds under these conditions is generally difficult, as most flows will move sand and finer materials, and there generally aren't enough true gravels to justify using the D_{65} or D_{84} ($65^{\text {th }}$ or $84^{\text {th }}$ percentile grain size) as often done with bimodal sediment distributions. In this case, the median grain sizes for the entire sediment distribution in each reach $\left(\mathrm{D}_{50}\right)$ were used to estimate the erosion thresholds, including the cohesive clays at LAD-1 and SD-1. The Fischenich 2001 entrainment relationships provide reasonable results when dealing with the fine gravels found at the non-clay sites, but for the clays, the Shields equation was used, albeit modified by setting the critical shear to a given number based on estimates of cohesiveness and strength of the clay (Chow 1959, $4-9 \mathrm{~N} / \mathrm{m}^{2}$). The calculated erosion threshold discharge values varied between 16% and 55% of estimated bankfull flows, with an average of 33%. Sediment generally begins moving at flows around $1 / 3$ to $1 / 2$ of bankfull, so the estimated values suggest that the entrenched channels with fine grained beds and banks might be relatively sensitive to increases in flows. LR-5 and LAD-1 appear to be less sensitive, whereas SD-1, which is steeper and flows through sandy clay, is expected to be the most sensitive.

In addition, it appears that many of the drains within the study site are maintained. Channel widening, bank steepening, and further entrenchment, which may or may not be associated with in-channel maintenance work, could alter the erosion threshold values, channel sensitivity, and the morphology in general (e.g., over steepened banks tend to fail, wider channel tend to have higher threshold discharges.) The current values are based on conditions over the last 5 years, and although we tried to be conservative, sites may have been altered more recently.

Table 5.3: Erosion Threshold Analysis Values

Parameter	LR-2	LR-5	LAD-1	SD-1	LRD-4
The Bankfull Geometry					
Average Bankfull Width (m)	18.84	7.72	4.34	2.59	5.20
Average Bankfull Depth (m)	1.08	0.85	0.59	0.34	0.55
Bankfull Gradient (\%)	0.08	0.06	0.11	0.43	0.07
Bed Material					
D_{50} (mm)	5.30	4.0	0.0068	0.003	0.56
D_{84} (mm)	49.28	23.90	0.098	0.326	2.72
Bankfull Hydraulics					0.035
Manning's n (estimate)	0.035	0.035	0.035	0.035	
Average Bankfull Velocity (m/s)	0.88	0.59	0.61	0.83	0.47
Average Bankfull Discharge (m$\left.{ }^{3} / \mathrm{s}\right)$	20.02	4.31	1.84	0.87	1.76
Thresholds					
Critical Particle Size	5 mm	4 mm	Clay	Clay	4 mm
Method of analysis	Fischenich	Fischenich	Shields/Chow	Shields/Chow	Fischenich
(2001)	(2001)	(1959)	(1959)	(2001)	
Critical Discharge (m$\left.{ }^{3} \mathrm{~s}^{-1}\right)$	5.46	2.35	0.85	0.14	0.4
Average Critical Velocity (ms ${ }^{-1}$)	0.54	0.48	0.51	0.49	0.31
Critical/Bankfull Discharge	28%	55%	46%	16%	23%

6. Restoration/Remediation Opportunities

1. Restoration of altered channels

Previously altered channel sections could be restored and rehabilitated to channels that exhibit natural functions. The majority of the study areas are drains where natural channel design principals can be implemented. A lot of these channels are deep with high steep banks that are exhibiting erosion. Bank restructuring and floodplain terracing is an option for these entrenched watercourses, as the channels currently cannot access their floodplains due to the high banks. The result of the existing condition is greater stress being exerted on the bed during higher flows. The work should include re-grading the banks to create benches or terraces, which would help dissipate energy and re-connect the bankfull channel to a floodplain area. The re-graded banks should be re-vegetated to help stabilize the banks and create floodplain habitat.
2. Re-establish riparian vegetation

Re-establishing a healthy riparian vegetation community will not only increase bank stability, but will also provide shading to the creek, contributing to aquatic habitat through the contribution of organic debris. It also contributes to the overall aesthetic impact of the system.
3. Construct channel bed morphology for fish habitat

Many of the channels in the study area lack bed morphology to support any fish habitat due to over-widened channel widths and sediment accumulation. By constructing structures to narrow cross-sectional area (i.e. wood deflectors sticking out of the banks) to promote bed morphology and re-grade the banks to create benches or terraces to help dissipate energy and help sediment transport, fish may have a healthy habitat.
4. Removal of hard structures - bed and banks

There are reaches and portions of reaches in the Windsor Annex Lands that have hardened banks (e.g. LR-2, LRD-1 and MD-1). The conditions of the hard structures (concrete and retaining walls) vary with some failing and others being undermined and may eventually fail. By replacing these structures with a 'softer' bio-engineered approach such as vegetated riprap or brush layering, it offers the stability and erosion protection of an engineered structure with the aesthetic and ecological benefits of incorporated plantings. These techniques are ideal for the treatment of localized scour issues where lateral expansion or channel migration is undesirable.
5. Local bank stabilization area

The majority of the reaches in the study area are experiencing bank erosion. In these areas, localized bank treatment could be considered to dissipate the expected increase in flow regime. Bio-engineering techniques such as brush layering and crib walls effectively increase the shear strength of the banks, allowing them to withstand higher flows than those tolerated by existing bare soils.

7. Conclusions

This report presents the findings of geomorphological reach characterization, meander belt width assessment, erosion threshold analysis at selected fieldwork sites, and cross-sectional monitoring. The report is intended to provide a characterization of existing conditions for Upper Little River and its associated drains contained within the Sandwich South Employment lands. Based on the report findings the following key conclusions can be drawn:

- Meander belt widths

Meander belt widths were delineated for all reaches based on either current channel planform or current channel dimensions. Due to a history of alteration and straightening traditional methods of meander belt width delineation could not be used in which case channel dimensions (from field data) were used in conjunction with empirical relationships to calculate an appropriate belt width. Erosion setbacks were calculated as 10% of the preliminary belt width as historical migration rates could not be determined. Final belt widths ranged from a minimum of 28 m to a maximum of 216 m . Larger belt widths were determined for reaches with a more sinuous planform and larger channel dimensions. Any future development of the study area should occur outside of the meander belt widths to ensure channel stability.

- Reach characterization

Within the study area, reaches can be grouped into three different categories: the main Little River channel (LR-1 to LR-6), the Little River drain (LRD-1 to LRD-5), and the agricultural drains (all remaining reaches). While the reaches differ widely in channel dimensions, characteristics are similar. The majority of the reaches have been straightened or altered in some way. Banks are protected by various structures ranging from gabions and terra blocks, to large steel retaining walls on the main Little River reaches. The agricultural drains appear to be mostly man-made straight ditches, lacking any natural geomorphic features. Bank erosion is prevalent in the entrenched, agricultural drains as well as in some of the larger reaches where bank protection is slightly undermined. Based on these characteristics noted during rapid assessments, all reaches were classified as in transition or adjustment. Most channels were widening with a secondary process of aggradation. As the channels widen and erode the banks, trees lean and fall into the channel creating woody debris which traps sediment leading to the secondary process of aggradation. Cross section monitoring results support this characterization as well. Both LR-3 and LRD-4 showed slight aggradation between the two times of measurement. Reaches BRD-1, NC-1, and SC-1 had evidence of bank slumping and erosion over the monitoring period.

- Erosion thresholds

Erosion thresholds were done for five reaches: two on the Little River main channel, one on the Little River drain, and two on agricultural drains. This selection gave a representative sample of the reaches within the study area. The critical discharge was on average 33% of the bankfull discharge which is

relatively low. This is attributed to the entrenched nature of the majority of the reaches, resulting in a high bankfull discharge relative to grain size within the channel.

8. References

Chapman and Putnam. 1984. The Physiography of Southern Ontario (3 $3^{\text {rd }}$ Edition). Ontario Geological Survey, Special Volume 2. Ontario Ministry of Natural Resources, Toronto.

Chow, VT. 1959. Open Channel Hydraulics. McGraw Hill, Boston, MA. 680pp.
Fischenich. 2001. Stability Thresholds for Stream Restoration Materials. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-29), U.S. Army Engineer Research and Development Center, Vicksburg, M.S. www.wes.army.mil/e/emrrp

Galli, J. 1996. Rapid stream assessment technique, field methods. Metropolitan Washington Council of Governments. 36pp.

Ministry of the Environment. 2003. Stormwater Management Planning and Design Manual, Ontario Ministry of Environment, March 2003.

Parish Geomorphic Ltd. 2004. Belt Width Delineation Procedures. Submitted to: Toronto and Region Conservation Authority.

Appendix A: Photographic Record of Reaches

Sixth Concession (SCD-1)

Looking downstream at right bank toe erosion

Sixth Concession (SCD-2)

Looking downstream at reach break and bank

Ninth Concession Drain (NCD-1)
Looking upstream from near middle of reach

Baseline Road Drain (BRD-1)

Looking downstream from end of reach at bank erosion

Lachance Drain Reach (LAD-1)
Cross section 6 looking upstream

Little River Reach (LR-1)

Looking downstream at retaining walls

Little River Reach (LR-2)

Cross section 2 looking downstream

Little River Reach (LR-3)

Looking at downstream end of reach at toe erosion of right bank

Little River Reach (LR-4)

Looking downstream from road crossing

ERROR: stackunderflow
OFFENDING COMMAND:
STACK:

APPENDIX K

Preliminary Opinion of Probable Costs

Upper Little River Watershed Master Drainage and Stormwater Management Plan
Preliminary Opinion of Probable Costs

Description	Alternative 1		Alternative 2		Alternative 3			rnative 4	Alternative 5		Alternative 6	
	Do-Nothing		Off-Line Water Quality and no Water Quantity Control		On-line Water Quality and Quantity Controls Communal OnLine SWM		On-line Water Quantity and Off-line Water Quality Controls		Distributed Offline Water Quality and Quantity Controls		Grouped Off-line Water Quality and Quantity Controls	
Channel Improvements (\$/m)	\$	1,000	\$	1,000	\$	1,000	\$	1,000	\$	1,000	\$	1,000
Pond (\$/ha of drainage area)	\$	5,000	\$	5,000	\$	7,000	\$	11,000	\$	11,000	\$	10,000
Improved Channel length (m)		-		28,000		28,000		28,000		28,000		28,000
Proposed area requiring SWM Facilities (ha)		-		3,000		3,000		3,000		3,000		3,000
Channel Improvements	\$	-	\$	28,000,000	\$	28,000,000	\$	28,000,000	\$	28,000,000	\$	28,000,000
SWM Facilities	\$	-	\$	15,000,000	\$	21,000,000	\$	33,000,000	\$	33,000,000	\$	30,000,000
Subtotal	\$	-	\$	43,000,000	\$	49,000,000	\$	61,000,000	\$	61,000,000	\$	58,000,000
Allowance/Contingency (15\%)	\$	-	\$	6,450,000	\$	7,350,000	\$	9,150,000	\$	9,150,000	\$	8,700,000
Design/Construction Administration (10\%)	\$	-	\$	4,300,000	\$	4,900,000	\$	6,100,000	\$	6,100,000	\$	5,800,000
Grand Total	\$	-	\$	53,750,000	\$	61,250,000	\$	76,250,000	\$	76,250,000	\$	72,500,000

Notes Alternatives 3 to 5 assume proposed flows are attenuated to the capacity of the existing municipal drain network
Alternatives 2 to 5 assume the existing municipal drain network is abandoned and offsetting measures are required Costs include excavation, fine grading, hard servicing (headwalls, pipes, rip-rap, etc.), and landscaping Costs do not include property or pump stations

APPENDIX L

Stage 1 Archaeology Assessment

Ministry of Tourism, Culture and Sport
Archaeology Programs Unit
Programs and Services Branch
Culture Division
401 Bay Street, Suite 1700
Toronto ON M7A 0A7
Tel.: (416) 212-8442
Email: kaye.boucher@ontario.ca

Ministère du Tourisme, de la Culture et du Sport
Unité des programmes d'archéologie
Direction des programmes et des services
Division de culture
401, rue Bay, bureau 1700
Toronto ON M7A OA7
Tél. : (416) 212-8442
Email: kaye.boucher@ontario.ca

May 16, 2016
Walter Frank McCall (P389)
Stantec Consulting
48 Charles Brantford ON N3T 1B3

RE: Review and Entry into the Ontario Public Register of Archaeological Reports: Archaeological Assessment Report Entitled, "Stage 1 Archaeological Assessment: Upper Little River Watershed Master Plan and Stormwater Management Plan Various Lots and Concessions, Geographic Townships of Sandwich East and South, now City of Windsor and Town of Tecumseh, Essex County, Ontario ", Dated Apr 8, 2015, Filed with MTCS Toronto Office on Apr 22, 2015, MTCS Project Information Form Number P389-0040-2014

Dear Dr. McCall:

This office has reviewed the above-mentioned report, which has been submitted to this ministry as a condition of licensing in accordance with Part VI of the Ontario Heritage Act, R.S.O. 1990, c 0.18. ${ }^{1}$ This review has been carried out in order to determine whether the licensed professional consultant archaeologist has met the terms and conditions of their licence, that the licensee assessed the property and documented archaeological resources using a process that accords with the 2011 Standards and Guidelines for Consultant Archaeologists set by the ministry, and that the archaeological fieldwork and report recommendations are consistent with the conservation, protection and preservation of the cultural heritage of Ontario.

The report documents the assessment of the study area as depicted in Figure 4 of the above titled report and recommends the following:

Stantec was retained by the City of Windsor to complete a Stage 1 archaeological assessment for a study area, measuring approximately 225 hectares in size, located on various Lots and Concessions, Townships of Sandwich East and South, now City of Windsor and Town of Tecumseh, Essex County, Ontario (Figure 1).

The Stage 1 archaeological assessment, involving background research and a property inspection, resulted in the determination that portions of the study area exhibit a moderate to high potential for the identification and recovery of archaeological resources. As such, a Stage 2 archaeological assessment will be required for portions of the study area (Figure 4).

The Stage 2 archaeological assessment will include the systematic walking of open ploughed fields at five metre intervals as outlined in Section 2.1.1 of the MTCS; 2011 Standards and Guidelines for Consultant Archaeologists (Government of Ontario 2011). The MTCS standards further require that all agricultural
land, both active and inactive, be recently ploughed and sufficiently weathered to improve the visibility of archaeological resources. Ploughing must be deep enough to provide total topsoil exposure, but not deeper than previous ploughing, and must be able to ensure at least 80% ground surface visibility.

Moreover, the Stage 2 archaeological assessment will include a test pit survey at five metre intervals in areas inaccessible for ploughing as outlined in Section 2.1.2 of the MTCS; 2011 Standards and Guidelines for Consultant Archaeologists (Government of Ontario 2011). The MTCS standards require that each test pit be approximately 30 centimetres in diameter, excavated to at least five centimetres in to subsoil, and have all soil screened through six millimetre hardware cloth to facilitate the recovery of any cultural material that may be present. Prior to backfilling, each test pit will be examined for stratigraphy, cultural features, or evidence of fill.

Should any areas of disturbance or features indicating that archaeological potential have been removed, including permanently wet areas, not previously identified during the Stage 1 property inspection be encountered during the Stage 2 archaeological assessment, they will be documented as outlined in Section 2.1.8 of the MTCS; 2011 Standards and Guidelines for Consultant Archaeologists (Government of Ontario 2011).

Additional archaeological assessment is required; hence the study area remains subject to Section 48(1) of the Ontario Heritage Act and may not be altered, or have artifacts removed from them, except by a person holding an archaeological license.

Based on the information contained in the report, the ministry is satisfied that the fieldwork and reporting for the archaeological assessment are consistent with the ministry's 2011 Standards and Guidelines for Consultant Archaeologists and the terms and conditions for archaeological licences. This report has been entered into the Ontario Public Register of Archaeological Reports. Please note that the ministry makes no representation or warranty as to the completeness, accuracy or quality of reports in the register.

Should you require any further information regarding this matter, please feel free to contact me.

Sincerely,
Kaye Boucher
Archaeology Review Officer

cc. Archaeology Licensing Officer
Anna Godo,City of Windsor
Craig Newton,a. Environmental Approvals Branch Ministry of the Environment

[^0]
Stage 1 Archaeological Assessment Upper Little River Watershed Master Plan and Stormwater Management Plan

Various Lots and Concessions,
Geographic Townshipsof
Sandwich East and South, now
City of Windsor and Town of
Tecumseh, Essex County, Onta rio

Stantec

Prepared for:
Ms. Anna Godo, P. Eng.
City of Windsor 350 City Hall Square West, Windsor, ON N9A 6S1

Prepared by:
Stantec Consulting Ltd.
200-835 Paramount Drive
Stoney Creek, ON L8J OB4
Tel: (905) 385-3234
Fax: (905) 385-3534
Lic ensee: Walter Mc Call, Ph.D.
License \#: P389
PIF \#: P389-0040-2014
Project \#: 160311265

ORIG INAL REPORT

```
STAGE 1 ARCHAEOLOG ICALASSESSMENT: UPPER LTILE RIVER WATERSHED
MASTER PLAN AND STORMWATER MANAGEMENTPLAN
```


Project Context

April 8, 2015

Table of Contents

PROJ ECTPERSONNEL I
EXECUIIVE SUMMARY II
1.0 PROJ ECTCONIEXT. 1.1
1.1 DEVELO PMENTC ONTEXT 1.1
1.2 HISTORICALCONTEXT. 1.2
1.2.1 Post-Contact Aboriginal Resources 1.2
1.2.2 Euro-Canadian Resources 1.3
1.3 ARCHAEOLOGICALCONTEXT. 1.6
1.3.1 The Natural Environment 1.6
1.3.2 Pre-contact Aboriginal Archaeological Resources 1.7
1.3.3 Previously Known Archaeologic al Sites and Surveys 1.7
2.0 FELD MEIHODS 2.1
3.0 ANALYSIS AND CONC USIONS 3.1
4.0 RECOMMENDATIONS 4.1
5.0 ADVICE ON COMPLANC W WIH LEG ISLATION 5.1
6.0 BIBLOGRAPHY AND SOURCES. 6.1
7.0 IMAGES 7.1
7.1 PHOTOS 7.1
8.0 MAPS 8.1
9.0 CLOSURE. 9.1
USTOF TABLES
Table 1: Landowner Information from the 1881 Illustrated Historic al Atlas of Essex County 1.4
Table 2: Cultural Chronology of Essex County 1.7
Table 3: Archaeologic al Sites Registered within One-Kilometre of Study Area 1.8
Table 4: Archaeological Assessments Completed Within 50 metres of Study Area 1.8
USTOF RGURES
Figure 1: Location of Study Area 8.2
Figure 2: Treaties and Purchases, adapted from Moris 1943. 8.3

STAG E 1 ARC HAEOLOG IC ALASSESSMENT:
UPPER UTILE RVER WATERSHED
MASTER PLAN AND STORMWATER MANAGEMENTPLAN
Project Context
April 8, 2015
Figure 3: Portion of the 1881 Map of the Geographic Townships of Sandwich East and South
8.4

Figure 4: Areas of Archa eologic al Potential.. 8.5

Project Context
April 8, 2015

Project Personnel

Archaeology Lead:	Walter McCall, Ph.D. (P389)
Licensed Archaeologis::	Walter McCall, Ph.D. (P389)
Lic ensed Field Director:	Da ren Kipping, MA (422)
Report Writer:	Gemma Calgie, B.Sc. (R472)
Technical Review:	Jeffrey Muir, BA (R304)
Lic ensee Review:	Walter McCall, Ph.D. (P389)
Senior Review:	Jim Wilson, MA (P001)

Acknowledgements

Proponent Contact:
Ministry of Tourism, Culture and Sport: Robert von Bitter

Executive Summary

Stantec Consulting Ltd. (Stantec) was retained by the City of Windsor to conduct a Stage 1 archaeologic al assessment on va rious Lots a nd Concessions, Geographic Townships of Sandwich East and South, now City of Windsor and Town of Tec umseh, Essex County, Onta rio prior to the construction of the stormwater management system within the study area.

This a ssessment serves to meet the requirements of the Master Plan Munic ipal Class Environmental Assessment under the Environmental Assessment Act (Govemment of Ontario 1990a: Schedule 6.1). These guidelines require that an archaeological assessment be conducted priorto any infrastructure projects. The Stage 1 archaeologic al assessment was conducted in accordance with the Ministry of Tourism, Culture and Sport's (MTCS) 2011 Standards and Guidelines for Consulta nt Archaeologists (Govemment of Onta rio 2011).

The objectives of the Stage 1 assessment were to compile all a vailable information about the known and potential archaeologic al heritage resources within the study area and to provide specific direction for the protection, management and/or recovery of these resources. This Stage 1 archaeological assessment wasconducted under archaeological consulting license P389 issued to Walter McCall, Ph.D., of Stantec by the MTCS. A site visit was undertaken on April 17, 2014 as per Section 1.2 of the Standa rds a nd Guidelines for Consultant Archa eologists (Govemment of Ontario 2011)

The Stage 1 archaeological assessment, involving background research and a property inspection, resulted in the determination that portions of the study area exhibit a moderate to high potential for the identification and recovery of archaeological resources. As such, a Stage 2 archaeological assessment will be required for portions of the study area.

The Stage 2 archaeological assessment will include the systematic walking of open ploughed fields at five metre intervals as outlined in Section 2.1.1 of the MTCS' 2011 Standards and Guidelines for Consulta nt Arc ha eologists (Govemment of Ontario 2011). All a gric ultural land, both active and inactive, should be recently ploughed and suffic iently weathered to improve the visibility of archaeologic al resources. Ploughing must be deep enough to provide total topsoil exposure, but not deeper than previous ploughing, with at least 80% ground surface visibility.

Moreover, the Stage 2 archaeologic al assessment will include a test pit survey at five metre intervals in a reas ina c cessible for ploughing as outlined in Section 2.1.2 of the MTCS' 2011 Standards a nd Guidelines for Consultant Archaeologits (Govemment of Onta rio 2011). The MTC S standards require that each test pit be approximately 30 centimetres in dia meter, excavated to at least five centimetres in to subsoil, a nd have all soil screened through six

STAGE 1 ARC HAEOLOG ICALASSESSMENT:
 UPPER ITILE RVER WATERSHED
 MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Project Context
April 8, 2015
millimetre hardware cloth to facilitate the recovery of a ny cultural material that may be present. Prior to backfilling, each test pit will be examined for stratigraphy, cultural features, orevidence of fill.

The MTCS is a sked to review the results presented and to accept this report into the Onta rio Public Register of Archa eological Reports. Additional archaeological assessment is required; hence the study a rea remains subject to Section 48(1) of the Ontario Herita ge Act and may not be altered, or have artifacts removed from them, except by a person holding an archaeological license.

The Exec utive Summary highlights key points from the report only; for complete information and findings, the reader should exa mine the complete report.

1.0 PROJ ECTCONIEXT

1.1 DEVELOPMENTCONTEXT

Stantec Consulting Ltd. (Stantec) was retained by the City of Windsor to conduct a Stage 1 archaeological assessment on various Lots and Concessions, Geographic Townships of Sandwich East and South, now City of Windsor and Town of Tecumseh, Essex County, Ontario prior to the construction of the stormwater management system within the study area.

This a ssessment serves to meet the requirements of the Master Plan Munic ipal Class Environmental Assessment under the Environmental Assessment Act (Govemment of Onta rio 1990a: Schedule 6.1). These guidelines require that an archa eological assessment be conducted prior to any infrastructure projects. The Sta ge 1 archaeological assessment was conducted in accordance with the Ministry of Tourism, Culture and Sport's (MTCS) 2011 Sta nd ards and Guidelines for Consulta nt Archaeologists (G ovemment of Onta rio 2011).

The objectives of the Stage 1 assessment were to compile all a vailable information about the known and potential archaeological hentage resources within the study a rea a nd to provide specific direction for the protection, management and/or recovery of these resources. In compliance with the provincial standards and guidelines set out in the MTCS' Sta ndards and Guidelines for Consulta nt Archa eologists (Govemment of Onta rio 2011), the objectives of the Stage 1 Archaeological Overview/Background Study are as follows:

- To provide information about the study area's geogra phy, history, previous archaeological fieldwork and current land conditions;
- To evaluate in detail the study area's archaeological potential which will support rec ommendations for Stage 2 survey for all or parts of the property; and
- To recommend appropriate strategies for Stage 2 survey.

To meet these objectives Sta ntec archaeologists employed the following research strategies:

- A review of relevant archaeological, historic and environmental literature perta ining to the study area;
- A review of the land use history, including pertinent historic maps;
- An examination of the Onta rio Archaeological Sites Data base (ASDB) to determine the presence of known archaeological sites in and a round the project area; and
- Documentation of the study area during a property inspection.

Permission to enter and document the study area was provided by Ms. Anna Godo, P.Eng.

Project Context
April 8, 2015

1.2 HISTORICALCONTEXT

1.2.1 Post-Contact Aboriginal Resources

The post-contact Aboriginal occupation of Southem Ontario washeavily influenced by the dispersal of va rious Iroquoia n-speaking communities by the New York State Iroquois and the subsequent arrival of Algonkian-speaking groups from northem Ontario at the end of the $17^{\text {th }}$ century and beginning of the $18^{\text {th }}$ century (Konrad 1981; Schmalz 1991). By 1690, Algonkian speakers from the north appear to have begun to repopulate Bruce County (Rogers 1978:761). This is the period in which the Mississaugas are known to have moved into southem Ontario and the lower Great Lakes watersheds (Konrad 1981). In southwestem Ontario, however, members of the Three Fires Confederacy (Chippewa, Ottawa, and Pota watomi) were immigrating from Ohio and Michigan in the late 1700s (Feest and Feest 1978:778-779).

The nature of Aborig inal settlement size, population distribution, and material culture shifted as European settlers encroached upon their tenitory. Despite this shift, however, "written accounts of material life and livelihood, the correlation of historic ally recorded villages to their archaeologic al manifestations, and the similarities of those sites to more ancient sites have revealed an antiquity to documented cultural expressions that confirms a deep historical continuity to Iroquoian systems of ideology and thought" (Femis 2009:114). As a result, First Nations peoples of Southem Ontario have left behind archaeologic ally signific a nt resources throughout Southem Ontario which show continuity with past peoples, even if they have not been recorded in historic al Euro-C anadian doc umentation.

The study area first enters the Euro-Canadian historic record on May 19, 1790 as part of Treaty Number 2, which details the surrender of land to the Crown by the Odawa, Chippewa, Potta watomi, and Huron. Treaty Number 2:
... was made with the O[da wa], Chippew[a], Potta watom[i] and Huro[n] May 19th, 1790, portions of which nations had established themselves on the Detroit River all of whom had been driven by the Iroquois from the northem and eastem parts of the Province, from the Detroit River easterly to Catfish Creek and south of the river La Tranche [Thames River] and Chenail Ecarte, and contains Essex County except Anderdon Township and Part of West Sandwich; Kent County except Zone Township, and Gores of Camden and Chatham; Elgin County except Bayham Township and parts of South Dorchester and Malahide. In Middlesex County, Del[a]ware and Westminster Townships and part of North Dorchester [are included].

Moris 1943:17
While it is diffic ult to exactly delineate treaty boundaries today, Figure 2 providesan approximate outline of Treaty Number 2.

STAGE 1 ARC HAEOLOG IC ALASSESSMENT: UPPER UTILE RVER WATERSHED
 MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Project Context
April 8, 2015

1.2.2 Euro-Canadian Resources

The study a rea falls within the Geographic Townships of Sandwich East and South, Essex C ounty, Ontario. Present day Essex County was originally part of the District of Hesse, one of four districts founded in 1788 after the British came into possession of most of North America. The District of Hesse comprised all British teritories west of Long Point, which makes up most of Westem Onta rio. In 1792, Upper Canada re-orga nized into 19 counties. The District of Hesse was renamed the Westem District and conta ined two counties, Kent and Essex. The original Township of Sandwich was first constituted in 1788, but was subdivided into munic ipalities a longside the growth of regional towns, until in 1861 the area comprised the Town of Sandwich, City of Windsor, Town of Walkerville, and Sa ndwich West, East, a nd South (Neal 1909: 12).

In 1615, the French merchant and na vigator Sa muel De Champlain conducted an expedition from Quebec to the Detroit River, where he launched an attack on an Iroquoian village, believed to have stood at the location of present day Detroit. However, his forces were repelled, and Euro-Canadian settlement in the region did not take hold until after 1701, when M. de la Mottee Cadillac, commissioned by the French Govemor of Canada, established a military and trading post at the site. This initial outpost became known as Fort Pontc hartrain, and attracted further domestic settlement for several miles along both banks of the Detroit River.

Settlement on the eastem bank of the river, from the southem shore of Lake St. Cla ir to the Canard River in what would later bec ome the Township of Sa nd wich, intensified after 1750 when the French began to a ssign land near frontier posts to milita ry veterans. The region, known as the parish of L'Assomption (associated with a Jesuit mission built in 1748), was la id out into long, na rrow lots of 180 acres. These ran perpendic ular to the waterfront, extending several miles inla nd (Neal 1909: 6), a nd a re still visible in present day street plans.

Fort Pontchartrain wascaptured by Major Robert Rodgers for the British in 1760. Even though Detroit was offic ially surrendered to the newly-formed United Sta tes in 1783, the British maintained effective control until 1796, when the regional seat of govemment wastransferred to the new county town of Sandwich. During this interval Loyalists who wished to rema in under the British Crown began to settle the Canadian side of the Detroit River (Neal 1909: 12). In order to assist with new settlement and distribution of land in the District of Hesse, the La nd Board of the Westem District wascreated in 1788 to facilitate a survey of the region. British land surveyor Patrick McNiff was charged with the task in Sandwich Township, a nd completed his survey in 1793.

The study area lies in the vic inity of two major historic communities, Sa ndwich a nd Windsor. Planning work on the village of Sandwich began in 1788, when a one square mile block of la nd was acquired by the British from the Chiefs of the Wya ndottes/Huron, the Chippewa, and Ottawa for the price of three hundred pounds worth of supplies. It was laid out into one acre sections and 24 a cre residential lots, and named for the English borough of Sandwich in Kent. Sandwich wasestablished as the new county town by the Honourable Peter Russell in 1796, and

STAGE 1 ARC HAEOLOG ICALASSESSMENT:

UPPER ITILE RVER WATERSHED
MASTER PLAN AND STORMWATER MANAGEMENTPLAN
Project Context
April 8, 2015
its administrative function stimulated rapid growth. Industries included fur, salt, brick manufacturing, and fish hatcheries. The village was the first to see action during the War of 1812, when General Hull crossed from Detroit with a force of over 2,000 men, and played an important role in the Underground Railroad after the abolition of sla very by the British in 1833. Sa ndwich was incomorated as a town in 1858 (Neal 1909: 133-134).

Although the village of Sandwich was chosen asthe location of Essex County offices, the town of Windsor eventually outstripped the former in size and industry. Windsor was origina lly founded as South Detroit by J ames Dougall of Paisley, Scotland, who bought the land, laid it out as a village plot, and opened a store in 1830 . In 1846 , Windsor had a population of only 300 . In 1853, the Great Westem Railway had reached the village, and chose to terminate the line there rather than at Sandwich, as originally planned. Windsor was incorporated as a town in 1854 and by 1866, its population had increased to 4,500 (Neal 1909:136). The a mival of the railway marked the beginning of signific ant industrial development in Windsor. Several a reas that are now within the city limits, such as Walkerville and Ford City, were developed in the late 1800s and early 1900s as industrial and commercial companies set up operations in the region (Archaeologic al Services Inc. 2008).

The Windsor Subdivision of the Canadian Pacific Railway runseast - west across the northem portion of the study area. This railway is present on McPhillips' 1898 Plan of the Township of Sandwich (McPhillips 1898). Part of the Trans-Canada railway commissioned by the govemment in 1880, it reached Windsor in 1890, a nd the line is still in operation today. (Andreae 1997).

The 1881 Illustrated Historic al Atlas of Essex County, Ont.'s (Belden \& Co. 1881) map of the Townships of East and South Sandwich (Figure 3) identifieslandowners for ten of the 66 lots within the Stage 1 assessment area, as listed in Table 1. Within the boundary of the study a rea there are three homesteads and one schoolhouse visible on the map. The road system asdepicted on the map still exists today.

Table 1: Landowner Infomation from the 1881 Illustrated Historical Atas of Essex County

Lot	Concession	Owner	Comment
142	2	H. Morand	O wner of 50 acres. A small structure visible at the northem end of the lot, fronting Tecumseh Rd.
143	2	none	No structures visible.
$115-125$	3	none	No structures visible.
$126-127$	3	none	Schoolhouse depicted stradd ling the northem end of both lots.
$134-140$	3	none	No structures visible.
141	3	James Ross	Owner of 75 ac res. No structures visible.
$142-149$	3	none	No structures visible.
16	6	none	No structures visible.

STAGE 1 ARC HAEOLOGICALASSESSMENT: UPPER ITILE RVER WATERSHED
MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Project Context
April 8, 2015

Lot	Concession	Owner	Comment
14-17	7	none	No structures visible.
10-14	8	none	No structures visible.
15	8	Willia m Lyons	Owner of entire 200 acre lot. A small structure is visible in the northwest comer of the lot.
16	8	Jonathan Plant	O wner of 55 acres. A small structure is visible in the southeast comer of the lot, within the study area boundary.
17	8	none	Schoolhouse depicted in the southeast comer of the lot, within the study area boundary.
18	8	none	No structures visible.
10	9	none	No structures visible.
11	9	Robert Watson	Owner of 125 ac res. A small structure is visible at the eastem end of the lot, nearPike Creek, a nd within the study area boundary.
12-14	9	none	No structures visible.
15	9	George Hurst	O wner of 75 acres. Two small structures are visible in the southwest comer of the lot, within the study area boundary.
16-18	9	none	No structures visible.
11-15	10	none	No structures visible.
16	10	Samuel Mc Kenzie	Owner of entire 158 acre lot. A small structure is visible at the eastem end of the lot. During Stage 1 fieldwork, a herita ge bam was noticed in the northwest comer of the lot.
17	10	none	No structures visible.
18	10	George Little	Owner of 115 ac res. A small structure is visible in the northwestem comer of the lot.
19	10	none	No structures visible.
300	N/A	Alfred Renshaw	Owner of 50 acres. A small structure is visible on the eastem side of the lot.
301	N/A	Jeremiah McCarthy and James McCarthy	J eremiah Mc Carthy is listed as the owner of 110 acres on the eastem side of the lot, and J a mes McCarthy, 75 a cres on the westem side. A small struc ture is visible foreach, both at the southem end of the lot.
302	N/A	none	A small struc ture labeled "Old castle P.O. Toll Gate" is depicted in the southwest comer of the lot, at a Talbot Road intersection.

Historic al county atlases were produced primarily to identify factories, offices, residences and landholdings of subscribers and were funded by subscription fees. La ndowners who did not

STAGE 1 ARC HAEOLOGICALASSESSMENT: UPPER LTILE RVER WATERSHED
 MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Project Context
April 8, 2015
subscribe were not always listed on the maps (Caston 1997:100). As such, all structures were not necessarily depic ted or placed accurately (Gentilc ore and Head 1984).

The majority of the region surrounding the study area has been subject to European-style agric ultural practic es for over 100 years, with Euro-Canadian fa mers in the area by the mid-19th century. Much of the region today continues to be used for agric ultural puposes, despite the urban spread of Windsor to the north and west of the study area.

1.3 ARCHAEOLOGICALCONTEXT

The study area occupies all or part of Lots 10 to 19, Concessions 6 to 10 , and singular Lots 300302, Geographic Township of Sandwich South, and Lots 115 to 149, Concessions 2 to 3, Township of Sandwich East, Essex County, Ontario. It comprises a pproximately 225 hectares of active and inactive agric ultural lands, woodlots, manic ured la wns, commercial and residential properties, paved roads and highways, industrial installations, a railway, and land incomorated within the boundaries of Windsor Airport.

1.3.1 The Natural Environment

The study area is situated within the St. Clair Clay Plain (Chapman \& Putnam 1986:146-147).
Adjoining Lake St. Clair in Essex and Kent County Counties and the St. Clair River in Lambton County are extensive clay plains covering 2,270 square miles. The region is one of little relief, lying between 575 and 700 feet a.s.l., except for the moraine at Ridgetown and Blenheim which rises 50 to 500 feet higher....Glacial Lake Whittlesey, which deeply covered all of these lands, and Lake Waren which subsequently covered nearly the whole area, failed to leave deep stratified beds of sediment on the underlying clay till except around Chatham, between Blenheim and the Rondeau marshes, and in a few other smaller areas. Most of Lambton and Essex Counties, therefore, are essentially till plains smoothed by shallow deposits of lacustrine clay which settled in the depressions while the knolls were being lowered by wave action.

Chapman \& Putnam 1986:147
Two soil series are present within the Study Area. The primary soil series is Brookston Clay, a shaley and imperfectly drained clay till with medium lime content. Present also are small pockets of Brookston Clay Sand, a mixture of sand and Brookston Clay, which appears intermittently in a reas of shallow sand knolls. Although not ideal, Brookston Clay and Brookston Clay Sand are suita ble for pre-contact Aboriginal a griculture.

The closest extant sources of potable water are Little River, Pike Creek, and Canard River. These rivers and their sources bound the edges of the study a rea; Little River to the north, Pike Creek to the east, and Canard River to the southwest. The source of Little River lies within the study area itself. Further to these, the Detroit River runs 6.3 kilometres to the north and west of the study area, while the southem shore of Lake St. Clair is located 2.6 kilometres northeast.

STAGE 1 ARC HAEOLOG IC ALASSESSMENT:

UPPER ITILE RVER WATERSHED
MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Project Context
April 8, 2015

1.3.2 Pre-c ontact Aboriginal Archaeological Resources

This portion of southwestem Onta rio has been demonstrated to have been occupied by people as farback as 11,000 years ago as the glaciers retreated. For the majority of this time, people were practicing hunter gatherer lifestyles with a gradual move towards more extensive farming practices. Given the length of occupation of the study area prior to the arival of Euro-Canadian settlers, the pre-contact Aboriginal archaeological potential of the study a rea is judged to be moderate to high. Table 2 provides a general outline of the cultural chronology of Essex County, based on Ellis and Femis (1990).

Table 2: Cultural Chronology of Essex County

Period	Characteristics	Time Period	Comments
Early Paleo-Indian	Fluted Projectiles	9000-8400 B.C.	spruce parkland/caribou hunters
Late Paleo-Indian	Hi-Lo Projectiles	8400-8000B.C.	smaller but more numerous sites
Early Archaic	Kirk and Bifurcate Base Points	8000-6000 B.C.	slow population growth
Middle Archaic	Brewerton-like points	6000-2500 B.C.	environment similar to present
Late Archaic	Lamoka (narrow points)	2000-1800 B.C.	inc reasing site size
	Broad Points	1800-1500 B.C.	large chipped lithic tools
	Small Points	1500-1100B.C.	introduction of bow hunting
Terminal Arc haic	Hind Points	1100-950 B.C .	emergence of true cemeteries
Early Woodland	Meadowood Points	950-400 B.C.	introduction of pottery
Middle Woodland	Dentate/Pseudo-Scallop Pottery	400 B.C. - A.D. 500	increased sedentism
	Princ ess Point	A.D. 550-900	introduction of com
Late Woodland	Early Ontario Iroquoian	A.D. 900-1300	emergence of agricultural villages
	Middle Ontario Iroquoian	A.D. 1300-1400	long longhouses ($100 \mathrm{~m}+$)
	Late Ontario Iroquoian	A.D. 1400-1650	tribal warfare and displacement
Contact Aboriginal	Various Algonkian Groups	A.D. 1700-1875	early written records a nd treaties
Late Historic	Euro-Canadian	A.D. 1796present	European settlement

1.3.3 Previously Known Archaeological Sites and Surveys

In order to compile an inventory of archaeological resources, the registered archaeological site recordskept by the MTCS were consulted. In Onta rio, information conceming archaeological sites stored in the ASDB (Govemment of Onta rio n.d.) is ma inta ined by the MTCS. This database

STAGE 1 ARC HAEOLOG IC ALASSESSMENT:
 UPPER UTILE RVER WATERSHED
 MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Project Context
April 8, 2015
conta ins a rchaeological sites registered a c cording to the Borden system. Under the Borden system, Canada is divided into grid blocks based on latitude and longitude. A Borden Block is approximately 13 kilometres east to west and approximately 18.5 kilometres north to south. Each Borden Block is referenced by a four-letter designator and sites within a block are numbered sequentially as they are found. The study area under review is within Borden Block AbHr.

Information conceming specific site locations is protected by provincial policy, and is not fully subject to the Freedom of Information and Protection of Privacy Act. The release of such information in the past has led to looting or various forms of illegally conducted site destruction. Confidentiality extends to all media capable of conveying location, including maps, drawings, ortextual descriptions of a site location. The MTCS will provide information conceming site location to the party or an agent of the party holding title to a property, or to a licensed archaeologist with relevant cultural resource management interests.

An exa mination of the ASDB has shown that there are three a rchaeologic al sites registered within a one-kilometre radius of the study area (Table 3): one is multi - component and two are Euro - Canadian (Govemment of Ontario n.d.). The multi - component site, AbHr-4, is located within the curent study area on Lot 145, Concession 3 . It comprised a 30 metre scatter of Euro Canadian artifactsand one side notched point, and was observed and recorded by Mr. Frank Dieterman in 1991.

Table 3: Archaeological Sites Registered within One-Kilometre of Study Area

Borden Number	Site Name	Site Type	Cultural Affiliation
AbHr-17	-	Findspot	Euro-Canadian
AbHr-18	-	Homestead	Euro-Canadian
AbHr-4	-	Findspot	Multi - component

A total of six a rc haeologic al studies have been conducted within 50 metres of the study a rea (personal communic ation, Robert von Bitter, April 16, 2014; G ovemment of Onta rio n.d.), as summarized in Table 4.

Table 4: Archaeological Assessments Completed Within 50 metres of Study Area

Year	Title	Author
2010	Archaeological Assessment (Stages 1 and 2), Windsor Annex Sanitary Sewer Servic ing, City of Windsor, Essex County, Onta rio	Mayer Heritage C onsulta nts Inc.
2011	Stage 1 Archaeologic al Assessment County Road 43/Ba nwell Road Improvements Cla ss EA and Preliminary Design, County Road 42 northerly to CP Rail Line, County of Essex,	Archaeological Servic es Inc.

Project Context
April 8, 2015

Year	Tite	Author
	Ontario	
2012	Stage 2 Archaeologic al Assessment (AA): Windsor Railway Spur Extension within Part of Lots 136-140, Concession 3, Mc Niff's Survey, Geographic Township of Sandwich East, City of Windsor, Ontario	Archaeoworks
2013	Stage 1 Assessment of the La uzon Parkway, County Road 17, County Road 42, Future EastWest Arterial Road From Walker Road to County Road 17 Comidors, and the Sandwich South Secondary Plan, City of Wind sor, County of Essex.	Woodley
2013	Stage 1: Background Study Tecumseh Hamlet Servicing Plan Between County Roads 22 \& 42 (Geographic Township of Sandwich East), Town of Tec umseh, Essex County, Ontario	Woodley
2014a	Stage 1 Archaeologic al Assessment: Windsor Solar Project, Part of Lots 105 to 123, C oncession 3 Petite Cote, Geographic Township of Sandwich, Now City of Windsor, Ontario	Stantec

The Stage 1-2 assessment above, conducted by Mayer Herita ge Consulta nts Inc. (MHC) in 2010, and the Stage 2 assessment conducted by Archaeoworks in 2012, were undertaken within the limits of the current study area (see Figure 4).

MHC determined that the Stage 1-2 assessment area had cultural heritage value for both Aboriginal and Euro-Canadian sites. However, no artifacts or other archaeologic al resources were recovered during the Stage 2 fieldwork, and no further archaeologic al assessment was recommended (Mayer Herita ge Consultants Inc. 2010).

The Stage 2 assessment conducted by Archaeoworks in 2012 revealed one small Euro-Canadian artifact scatter consisting of eight artifacts. However, this scatter was determined to have low cultural herita ge value, and no further work was recommended (Archaeoworks 2012).

The Stage 1 assessment conducted by Stantec in 2014 on behalf of Windsor Solar Ltd. overlaps the current study a rea on Lots 116 to 123, Concession 3. The Stage 1 report is still forthcoming, but concludes that the area had cultural heritage value forboth Aboriginal and Euro-Canadian sites and Stage 2 assessment was recommended.

In addition to the assessments disc ussed above, the City of Windsor's Archaeologic al Master Plan Study Report (CRM Group Limited et al. 2005) disc usses the City of Windsor's archaeological context in general. As of 2005, a rc ha eologists had registered only 23 archaeologic al sites within the city limits or within the immediate vicinity. However, the a uthors of the a rchaeologic al

STAGE 1 ARC HAEOLOG ICALASSESSMENT: UPPER ITILE RVER WATERSHED MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Project Context

April 8, 2015
mana gement plan recognized that a number of poorly documented sitesexist and there are many sites still to be documented especially since the majority of the archaeological studies discussed in the archaeological management plan mapsare concentrated along the Detroit River or in southwest Windsor (CRM Group Limited et al. 2005:3-1 to 3-23).

In addition, the northem portion of the Study Area is depicted in the archaeological mana gement plan's archa eological potential mapping. Those portions identified as having archaeological potential are noted assuch due to the present of existing water sources, presuma bly the municipal drains (CRM Group Limited et al. 2005:Figure 1). Ultimately, approximately half of the Study Area retains high archaeological potential according to the 2005 mapping (CRM Group Limited et al. 2005:Figure 4). The archaeological ma na gement plan's evaluation of a rcha eological potential is further disc ussed in Section 3.0.

STAGE 1 ARC HAEOLOGICALASSESSMENT: UPPER UTILE RVER WATERSHED
 MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Field Methods
April 8, 2015

2.0 RED MEIHODS

The Stage 1 archaeological assessment compiled the available information conceming any known and/or potential archaeological heritage resources within the study area. A property inspection was conducted under PIF P389-0040-2014 issued to Walter Mc Call, Ph.D., of Stantec by the MTCS. The property inspection was completed on April 17, 2014. In accordance with Section 1.2 of the MTCS' Sta ndards and Guidelines for C onsultant Archaeologists (Govemment of Ontario 2011), the property inspection involved random spot-checking of the entire property and its periphery to identify the presence or absence of any features of a rchaeologic al potential (Figure 4). During the property inspection the weatherwas wam and sunny, and visibility of land features was exc ellent. At no time were field or weather conditions detrimental to the identific ation of features of a rchaeologic al potential.

The study a rea occupies all or part of Lots 10 to 19, Concessions 6 to 10 , and singular Lots 300302, Geographic Township of Sandwich South, and Lots 115 to 149, Concessions 2 to 3, Township of Sandwich East, Essex County, Ontario. It comprises a pproximately 225 hectares of active and ina ctive agric ultural lands, woodlots, manic ured lawns, commercial and residential properties, paved roads and highways, industrial installations, a railway, and land incomorated within the boundaries of Windsor Aiport.

The majority of the study area (80%) consists of active and inactive agric ultural land accessible for ploughing. A smaller portion of the Study Area comprises woodlots (10%) and manic ured lawns (5\%) that are unable to be ploughed. The remaining 5 percent of the Study Area consists of roads and highway, a railway line, and private laneways. These a reas are previously disturbed and are unable to be assessed.

The photography from the property inspection is presented in Section 7.1 and confirm that the requirement for a Stage 1 property inspection were met, as per Section 1.2 and Section 7.7.2 Standard 1 of the MTCS' 2011 Sta ndards and Guidelines for Consulta nt Archaeologists (Govemment of Ontario 2011).

Photos 1 to 8 demonstrate that the study area is primarily composed of relatively flat agric ultural fields. In accordance with Section 2.1.1 of the MTCS' 2011 Standards and Guidelines for Consultant Archaeologists (Govemment of Ontario 2011), these a reas will require Sta ge 2 physic al inspection using the pedestrian survey method at a five metre interval. Photos 9 to 11 depict areas of wood lot within the study area and Photos 12 and 13, exa mples of manic ured lawns. Both are inaccessible for ploughing and, in accordance with Section 2.1.2 of the MTCS' 2011 Standards and Guidelines for Consultant Arc haeologists (Govemment of Onta rio 2011), will require Stage 2 physical inspection using the test pit survey method at a five metre interval.

STAGE 1 ARC HAEOLOG ICALASSESSMENT:
 UPPER ITILE RVER WATERSHED
 MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Field Methods
April 8, 2015

A possible heritage property, a wooden bam, was noticed during fieldwork at the intersection of Concession Road 10 and Baseline Road. It is located in the northwest comer of Lot 16, Concession 10 (Table 1).

Photos 14-16 depict the Windsor Subdivision of the Canadian Pacific Railway running east west across the northem portion of the study area. Although this railway is a historic transportation route, having been completed in 1890, and appearing on McPhillips' 1898 Plan of the Township of Sandwich (McPhillips 1898), previous disturbance due to maintenance and expansion designates it an area of low archaeological potential.

Photos 17-19 provide examples of the various paved roads that cross the Study Area as well as their associated right-of-ways a nd culvert systems. As per Section 2.1, Standard $2 b$ of the Standa rds and Guidelines for Consulta nt Archa eologists (Govemment of Onta rio 2011) these areashave also been evaluated ashaving low potential due to deep land alteration that has severely damaged the integrity of archaeological resources and assuch, Sta ge 2 survey is not required.

3.0 ANALYSSSAND CONCLUSONS

Archaeological potential is established by determining the likelihood that archaeological resources may be present on a subject property. Stantec applied archaeologic al potential criteria commonly used by MTCS (Govemment of Ontario 2011) to determine a reas of archaeologic al potential within the region under study. These variables include proximity to previously identified archaeologic al sites, distance to varioustypes of water sources, soil texture and drainage, glacial geomorphology, elevated topography and the general topographic varia bility of the area.

Potable water is the single most important resource for any extended human occupation or settlement and since water sources in southwestem Ontario have remained relatively stable overtime, proximity to drinkable water is regarded as a useful index for the evaluation of archaeologic al site potential. In fact, distance to water is one of the most commonly used variables for predictive modeling of archaeological site location in Ontario. Distance to modem or ancient water sources is generally accepted as the most important determinant of past human settlement pattems and, considered alone, may result in a determination of archaeologic al potential. However, any combination of two or more other criteria, such as welldrained soils or topographic variability, may also indic ate archaeologic al potential. Finally, extensive land disturbance can eradicate archaeologic al potential (Wilson and Home 1995).

As disc ussed above, distance to water is an essential factor in archaeologic al potential modeling. When evaluating distance to water it is important to distinguish between water and shoreline, as well as natural and a rtific ial water sources, as these features affect sites loc ations and types to varying degrees. The MTCScategorizes water sourcesin the following manner.

- Prima ry water sourc es: lakes, rivers, streams, creeks;
- Secondary water sources: intermittent streams and creeks, springs, ma rshes a nd swa mps;
- Past water sourc es: glacial lake shorelines, relic river or stream channels, cobble beaches, shorelines of drained lakes or marshes; and
- Accessible or inaccessible shorelines: high bluffs, swa mp or marshy lake edges, sa ndbars stretching into marsh.

The closest extant sources of potable water are Little River, Pike Creek, and Canard River. These rivers and their sources bound the edges of the study area; Little River to the north, Pike Creek to the east, and Canard River to the southwest. The Little River originates in the northem portion of the study area. Further to these, the Detroit River runs 6.3 kilometres to the north and west of the study area, while the southem shore of Lake St. Clair is loc ated 2.6 kilometres northeast of the latter. Moreover, additional ancient and/or relic tributa ries of the Little River may have existed but are not identifiable today and are not indicated on historic mapping. These watercourses are also reflected in the archaeological potential mapping produced for the City of Windsor's archaeological management plan (CRM Group Limited et al. 2005).Furthermore, as

STAGE 1 ARC HAEOLOG IC ALASSESSMENT: UPPER LTILE RVER WATERSHED
 MASTER PLAN AND STORMWATER MANAGEMENTPLAN

Analysis and Conclusions
April 8, 2015
indicated previously, although not ideal, Brookston Clay and Brookston Clay Sand are suitable for pre-contact and post-contact Aboriginal agriculture. Add to these observations the presence of one registered multi - component site within one kilometre of the study area, and the pre-contact Aboriginal archaeological potential of the study area is judged to be high.

For Euro-Canadian sites, archaeological potential can be extended to areas of early EuroCanadian settlement, including places of military or pioneer settlements; early transportation routes; and properties listed on the munic ipal register or designated under the Onta rio Hentage Act or property that local histories or informants have identified with possible historic al events. The 1881 Illustrated Historic al Atlas of Essex County, Ont. (Belden \& Co. 1881) demonstrates that the study area and its environs were densely occupied by Euro-Canadian farmers by the later $19^{\text {th }}$ century. Much of the established road system and agric ultural settlement from that time is still visible today. Moreover, the ASDB recognizes two registered historic Euro-Ca na dian sites within one kilometre of the study area (G ovemment of Ontario n.d.). Therefore, the EuroCanadian archaeologic al potential of the study area is judged to be moderate to high.

The archaeologic al management plan for the City of Windsor (CRM Group et al. 2005) differs slightly from the archaeological potential determination here in that some portions of the Study Area are determined to have low archaeologic al potential. Examining the plan's mapping, it appears that the presence of watercourses is the factorthat takesprecedence in the weighting used to score archaeologic al potential in this area. However, the discussions in Section 1.2 and 1.3 above demonstrate the presence of First Nations groups in the area and a lack of documentation conceming possibly present Euro-Canadian structures in the historic mapping. These additional factors lend reason to believe that the majority of the Study Area could retain archaeologic al potential. Otherwise, some areas of low archaeologic al potential do exist within the Study Area, to include modem paved roads and railways, and various modem buidings and laneways, which exhibit disturbance from their construction. The municipal drains are natural watercourses that have been modified within the last century and reta in low archaeologic al either due to the low, wet nature of the area ordue to modem ditching and culvert construction.

When the above listed criteria are applied to the study area, the archaeological potential for pre-contact Aboriginal, post-contact Aboriginal, and historic Euro-Canadian sites is deemed to be moderate to high. Thus, in accordance with Section 1.3.1 of the Standards and Guidelinesfor Consultant Arc ha eologists (Govemment of Onta rio 2011), the Sta ge 1 archa eologic al a ssessment of the Upper Little River Watershed Master Plan and Stormwater Ma na gement Plan has determined that the study area exhibits moderate to high potential for the identific ation and rec overy of archaeologic al resources (Figure 4).

Recommendations
April 8, 2015

4.0 RECOMMENDATIONS

Stantec was retained by the City of Wind sor to complete a Stage 1 archaeologic al assessment for a study a rea, measuring approximately 225 hectares in size, located on various Lots and Concessions, Townships of Sandwich East and South, now City of Windsor a nd Town of Tecumseh, Essex County, Ontario (Figure 1).

Abstract

The Stage 1 archaeological assessment, involving background research and a property inspection, resulted in the determination that portions of the study area exhibit a moderate to high potential for the identification and recovery of archaeological resources. As such, a Stage 2 archaeological assessment will be required for portions of the study area (Figure 4).

The Stage 2 archaeological assessment will include the systematic walking of open ploughed fields at five metre intervals as outlined in Section 2.1.1 of the MTCS' 2011 Standards and Guidelines for Consulta nt Arc ha eologists (Govemment of Onta rio 2011). The MTCS standa rds further require that all a gric ultural land, both active and inactive, be recently ploughed and suffic iently weathered to improve the visibility of a rchaeologic al resources. Ploughing must be deep enough to provide total topsoil exposure, but not deeper than previous ploughing, and must be able to ensure at least 80% ground surface visibility.

Moreover, the Stage 2 archaeologic al assessment will include a test pit survey at five metre intervals in areas ina c cessible for ploughing as outlined in Section 2.1.2 of the MTCS' 2011 Standards and Guidelines for Consultant Archaeologists (Govemment of Onta rio 2011). The MTCS standards require that each test pit be approximately 30 centimetres in dia meter, excavated to at least five centimetres in to subsoil, a nd have all soil screened through six millimetre hardware cloth to facilitate the recovery of a ny cultural material that may be present. Prior to backfilling, each test pit will be examined forstratigraphy, cultural features, or evidence of fill.

Should any areas of disturbance orfeatures indic ating that archaeological potential have been removed, including permanently wet areas, not previously identified during the Stage 1 property inspection be enc ountered during the Stage 2 archaeologic al assessment, they will be documented as outlined in Section 2.1.8 of the MTCS' 2011 Standards and Guidelines for Consultant Arc ha eologists (Govemment of Ontario 2011).

The Ministry of Tourism, Culture and Sport is asked to review the results presented and to accept this report into the Onta rio Public Register of Archaeological Reports. Additional archaeologic al assessment is required; hence the study a rea remains subject to Section 48(1) of the Onta rio Heritage Act and may not be altered, or have artifacts removed from them, except by a person holding an archaeological license.

Advice on Compliance with Legislation
April 8, 2015

5.0 ADVICE ON COMPLANCE WTH LEGISLATION

This report is submitted to the Onta rio Minister of Tourism, Culture and Sport as a condition of licensing in accordance with Part VI of the Onta rio Heritage Act, R.S.O. 1990, c 0.18. The report is reviewed to ensure that it complies with the standards and guidelines that are issued by the Minister, and that the archaeologic al fieldwork a nd report recommendations ensure the conservation, protection and preservation of the cultural heritage of Ontario. When all matters relating to archaeologic al sites within the project area of a development proposal have been addressed to the satisfaction of the Ministry of Tourism, Culture and Sport, a letter will be issued by the ministry stating that there are no further concems with regard to alterations to archaeological sites by the proposed development.

It is an offence under Sections 48 and 69 of the Ontario Hentage Act for any party other than a licensed archaeologist to make any alteration to a known archaeological site or to remove any artifact or other physical evidence of past human use or activity from the site, until such time as a licensed archaeologist has completed fieldwork on the site, submitted a report to the Minister stating that the site has no further cultural heritage value or interest, and the report has been filed in the Ontario Public Register of Archaeology Reports referred to in Section 65.1 of the Onta rio Hertage Act.

Should previously undocumented archaeologic al resources be discovered, they may be a new archaeologic al site and therefore subject to Section 48(1) of the Ontario Heritage Act. The proponent or person discovering the archaeological resources must cease alteration of the site immediately and engage a lic ensed consultant archaeologist to camy out archaeological fieldwork, in compliance with Section 48(1) of the Onta rio Henitage Act.

The Cemeteries Act, R.S.O. 1990 c. C. 4 and the Funeral, Burial and Cremation Servic es Act, 2002, S.O. 2002, c. 33 (when proclaimed in force) require that any person disc overing human remains must notify the police or coroner and the Registrar of Cemeteries at the Onta rio Ministry of Consumer Services.

Archaeologic al sites recommended for further archaeologic al fieldwork or protection remain subject to Section 48(1) of the Ontario Heritage Act and may not be altered, or have artifacts removed from them, except by a person holding an archaeological lic ense.

Bibliography and Sources
April 8, 2015

6.0 BIBLIOGRAPHY AND SOURCES

Andreae, Christopher. 1997. Lines of Country: An Atlas of Railway and Waterway History in Canada. Erin: The Boston Mill Press.

Archaeologic al Servic es Inc. 2008. Detroit River Intemational Crossing Study: Draft Cultural Hentage Resource Assessment. Electronic document: http://www.partnershipborderstudy.com/pdf/CulturalHeritage/WEB Practic alAltsWP_Cult uralHeritage_April2008-appsonly.pdf. Last accessed on May 20, 2014.

Arc haeoworks. 2012. Stage 2 Archaeological Assessment (AA): Windsor Railway Spur Extension within Part of Lots 136-140, Concession 3, Mc Niff's Survey, Geographic Township of Sandwich East, City of Windsor, Ontario. Report on file with the Ministry of Tourism, C ulture and Sport, Toronto.

Belden \& Co., H. 1881. The Illustrated Historical Atlas of Essex County, Onta rio. Toronto: H. Belden \& Co.

Caston, Wayne A. 1997. Evolution in the Mapping of Southem Onta rio and Wellington County. Wellington County History 10:91-106.

Chapman, Lyman John and Donald F. Putnam. 1984. The Physiography of Southem Ontario. 3rd ed. Ontario Geological Survey Special Volume 2. Toronto: Ontario Ministry of Natural Resources.

Ellis, Chris J a and Neal Femis (editors). 1990. The Archaeology of Southem Onta rio to A.D. 1650. Occasional Public ation of the London Chapter, Ontario Archaeologic al Society, Number 5.

Feest, Johanna E. and Christian F. Feest 1978. The Ottawa. In Handbook of North Americ an Indians, Vol. 15 Northeast, pp. 772-786. B.G. Trigger, ed. Wa shington: Smithsonian Institute.

Feris, Neal. 2009. The Archaeology of Native-Lived Colonialism: Challenging History in the Great Lakes. Tuc son: University of Arizona Press.

Gentilcore, R. Louis and C. Grant Head. 1984. Ontario's History in Maps. Toronto: University of Toronto Press.

Govemment of Onta rio. 1990a. Environmental Assessment Act, R.S.O. 1990, CHAPTER E.18. Last amendment: 2010, c. 16, Sched. 7, s. 1. Electronic document: https://www.elaws.gov.on.ca/html/statutes/english/elaws_statutes 90e18_e.htm. Last accessed May 15, 2014.

Stantec

STAGE 1 ARC HAEOLOG IC ALASSESSMENT:

UPPER UTILE RVER WATERSHED

MASTER PLAN AND STORMWATER MANAGEMENTPLAN
Bibliography and Sources
April 8, 2015
Govemment of Ontario. 1990b. Onta nio Heritage Act, R.S.O. 1990, CHAPTER O.18. Last amendment: 2009, c. 33, Sched. 11, s. 6. Elec tronic document: http://www.elaws.gov.on.ca/html/statutes/english/elaws_statutes_90018_e.htm. Last accessed May 15, 2014.

Govemment of Ontario. 2011. Standards a nd Guidelines for C onsulta nt Archaeologists. Toronto: Ministry of Tourism, Culture and Sport.

Govemment of Ontario. n.d. Archaeologic al Sites Database Files. Toronto: Archaeology Programs Unit, Ministry of Tourism, Culture and Sport.

Konrad, Victor. 1981. An Iroquo is Frontier. the North Shore of Lake Ontario during the Late Seventeenth Century. J oumal of Historic al Geography 7(2).

Mayer Herita ge Consultants Inc. 2010. Arc ha eologic al Assessment (Stages 1 and 2), Windsor Annex Sa nitary Sewer Servicing, City of Windsor, Essex C ounty, Onta rio. Report on file with the Ministry of Tourism, Culture and Sport, Toronto.

McPhillips, G. 1898. Plan of the Township of Sandwich - West, East and South of the Towns of Walkerville and Sandwich and the City of Windsor. Electronic document. http://data2.archives.ca/nmc/n0011345_a2.pdf. Last accessed May 15, 2014.

Moris, J.L. 1943. India ns of Ontario. 1964 reprint. Toronto: Department of Lands and Forests.
Neal, F. 1909. The Township of Sandwich (past and present)... : An Interesting History of the Canadian Frontier Along the Detroit River, Including the Temitory Which Now Embrace the Present City of Windsor, the Towns of Sandwich and Walkerville and the Sandwich Townships, and Also a Brief Account of the Present County of Essex. Sandwich: Frederick Neal.

Rogers, Edward S. 1978. Southeastem Ojibwa. In Handbook of North Americ an Indians, Vol. 15 Northeast, pp. 760-771. B.G. Trigger, ed. Washington: Smithsonian Institution.

Schmalz, Peter S. 1991. The Ojibwa of Southem Ontario. Toronto: University of Toronto Press.
Wilson, J.A and M. Home. 1995. City of London Archa eologic al Master Plan. London: City of London, Department of Planning and Development.

7.0 IMAGES

7.1 PHOTOS

Photo 1: Agric ultural Field, facing west

Photo 3: Agric ultural Field with Road and Municipal ROW in foreground, facing north west

Photo 2: Agric ultural Field, facing east

Photo 4: Agric ultural Feld with Road and Municipal ROW in foreground, fac ing east

Stantec

Photo 6: Agric ultural Field with Munic ipal ROW in the foreground, facing west

Photo 7: Agric ultural Field, facing northeast
Photo 8: Fallow Inactive Agric ultural Field, facing north west

Stantec

Photo 9: Woodlot, facing north

Photo 11: Woodlot with Little River flowing through, facing north east

Photo 10: Inactive Agric ultural Field with Woodlot in the background, facing south west

Photo 12: Manic ured Lawn, facing south

Images
April 8, 2015
Photo 13: Manic ured Lawn, facing south
Photo 14: Intersection of Lauzon Parkway and the railway, facing north

Photo 15: Railway and transmission lines, showing location of Union Gas pipeline, facing east

Photo 16: Railway, facing north west

Images
April 8, 2015

Photo 17: Concession Road 9 and Highway 401 with Municipal ROW in the background, facing north

Photo 18: Intersection of Concession Road 9 and Baseline Road with Municipal ROW, facing north

Photo 19: Lauzon Road with Municipal ROW, showing c ulvert over Little River, facing south east

STAGE 1 ARC HAEOLOG ICALASSESSMENT:
UPPER ITILE RIVER WATERSHED
MASTER PLAN AND STORMWATER MANAGEMENT PLAN
Maps
April 8, 2015

8.0 MAPS

All maps will follow on succeeding pages.

O Stantec
I._. Archaeology Study Area

- J Archaeology Study Area --- Previously Assessed, Mayer Heritage \square
\square Previously Assessed, Archaeoworks 2012
\square Previously Disturbed
ZIII Provincially Signific ant Wetland
- Watercourse
- Railway, Active
- Transmission Line
-ut-- Unknown Pipeline

Notes

1. Coordinate system. NAD 1983 UTM Zone ITN

Base features produced under license with the Ontario Ministry
Othimagen © SWOOP Imager 2006.

City City of Windso
Upper Little River Stormwate
and Drainage Master Plan
Figure No.
4
Archaeological Potential

STAG E 1 ARC HAEOLOG ICALASSESSMENT:

UPPER UTILE RIVER WATERSHED

MASTER PLAN AND STORMWATER MANAGEMENTPLAN
Closure
April 8, 2015

9.0 CLOSURE

This report has been prepared for the sole benefit of the City of Windsor and may not be used by any third party without the express written consent of Stantec Consulting Ltd. and the City of Windsor. Any use which a third party makes of this report is the responsibility of such third party.

We trust this report meets your current requirements. Please do not hesitate to contact us should you require further information or have additional questions about any facet of this report.

STANIEC CONSULIING LTD.

Licensee Review

> (signature)

Walter McCall, Ph.D., Director of Archaeological Field Operations

Jim Wilson, MA, Princ ipal, Regional Disc ipline Lead, Archaeology

APPENDIX M

Source Water Protection

ERCA Event Based Areas

Essex Region Conservation Authority 360 Fairview Avenue West Essex, ON N8M 1 Y6
Sources: ERCA, County of Essex, City of Windsor, MNR, MOE, Stantec Consultants, StatsCanada
© Queen's Printer for Ontario, 2010
Map Produced in Co-Operation with the Province of Ontario and Conservation Ontario
This map should not be relied on as a precise indicator of routes or locations, nor as a guide to
navigation. The Essex Region Conservation Authority (ERCA) shall not be liable in any for the use of, or reliance upon, this map or any information contained herein.

Map Projection \& Datum: UTM NAD83 Zone 17N
 Plant IPZs and Vulnerability Scoring

Essex Region
Source Protection Area Assessment Report Map 4.18b

egend

D Intake - Type D

- Drinking Water System
_.. Source Protection Area Boundary
- Municipal, Lower Tier
- =-- International Boundary

Road
__ Railway
Water and Drainage
\leqslant Water Body
Intake Protection Zone
IPZ-1
\square IPZ-2
\square IPZ-3

This publication was produced by:
Essex Region Conservation Authority 360 Fairview Avenue West Essex, ON N8M 1Y6

Sources: ERCA, County of Essex, City of Windsor, MNR, MOE, Stantec Consultants, StatsCanada
© Queen's Printer for Ontario, 2010
Map Produced in Co-Operation with the Province of Ontario and Conservation Ontario

This map should not be relied on as a precise indicator of routes or locations, nor as a guide to navigation. The Essex Region Conservation Authority (ERCA) shall not be liable in any way
for the use of, or reliance upon, this map or any information contained herein.

Map Projection \& Datum: UTM NAD83 Zone 17N

From:	Katie Stammler KStammler@erca.org
Sent:	2017-12-07 5:06 PM
To:	Innes, Jayson
Cc:	John Henderson
Subject:	RE: Source water protection in Essex Region
Attachments:	A Guide to Using the ERCA Online Interactive Mapping Tool.pdf

Hi Jason,
Thanks for your call. I've attached a document that our Risk Management Official prepared to help with the use of our online mapping tool. Please feel free to share it with your colleagues. Our Source Water Protection Plan can be accessed here: http://essexregionsourcewater.org/resources/source water protection.cfm and the two policies that apply to the area in question are policy 31 and 32 - these are the policies that apply to the Event Based Area that the MOECC specifically asked about. You would address these policies by ensuring that any existing storage of fuel above the threshold limit $(15,000 \mathrm{~L})$ has a Risk Management Plan and that ERCA is informed of the installation of any future fuel storage that exceeds these limits.

I noticed that their letter also asks that your EA consider other sources of drinking water that aren't covered by the Source Protection Plan. Our SPP only includes policies for municipal intakes, so this would be referring to any private source of drinking water in the area, which would be well water. I believe this could be addressed with the mapping of the Highly Vulnerable Aquifers and Significant Groundwater Recharge Areas that I showed you. While we have no policies that apply to these areas, you may need to show that you are at least aware of whether your study area is within these boundaries.

Provided that your project does not include installing or altering a municipal drinking water intake, no new technical work nor amendments to the SPP will be required.

Katie

KATIE STAMMLER, PHD
Water Quality Scientist/Source Water Protection Project Manager Essex Region Conservation Authority 360 Fairview Avenue West, Suite 311 • Essex, Ontario • N8M 1 Y6
P. 519-776-5209 x 342 • F. 519-776-8688
kstammler@erca.org www.essexregionconservation.ca

Follow us on Twitter: @essexregionca

From: Innes, Jayson [mailto:jayson.innes@stantec.com]
Sent: Thursday, December 7, 2017 4:42 PM
To: Katie Stammler KStammler@erca.org
Cc: John Henderson JHenderson@erca.org
Subject: Source water protection in Essex Region
As a follow up to our phone call I have included a map of the study area and the letter from the MOECC discussing source water protection.

I will use the web sites you directed me to show that the site is in IPZ-3
The $3^{\text {rd }}$ paragraph on page 3 of the MOECC letter says
For assistance in determining whether the proposed project will require new technical work and potentially require amendments to the source protection plan for this area please contact the Project Manager for Drinking Water Source

Protection at the local source protection authority which coincidently in this case, is the Essex Region Conservation Authority itself.

Can you please confirm that no new technical work or potential amendments to the source water protection plan are required from this study. I can provide additional project details if required.

Thanks

Jayson Innes, M.A.Sc., P.Eng.
Senior Water Resources Engineer
Direct: (519) 585-7282
Mobile: (519) 569-0518
Stantec Consulting Ltd.
100-300 Hagey Boulevard
Waterloo ON N2L OA4 CA

(D) Stantec

 intended recipient, please delete all copies and notify us immediately.

From:
Sent:
To:
Subject:

John Henderson JHenderson@erca.org
2017-12-19 4:09 PM
Katie Stammler; Innes, Jayson
ULR - Source Protection

Thanks Katie.
Jayson - Please include the additional information included in Katie's e-mail below regarding the need to update the IPZ-3 and Event Based Area when drains are altered in the future. If you have any questions, please provide them directly to Katie with a copy to me.

Thank you,

John Henderson, P. Eng.
Essex Region Conservation Authority (ERCA)
360 Fairview Avenue West, Suite 311
Essex, Ontario N8M 1Y6
519-776-5209 ext. 246
Fax: 519-776-8688

Please consider the environment before printing this email
This e-mail transmission is confidential and may contain proprietary information for the express use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify us by telephone at the number above and arrange to return this transmission to us or destroy it.

From: Katie Stammler
Sent: Tuesday, December 19, 2017 4:03 PM
To: John Henderson JHenderson@erca.org
Subject: RE: ULR - Next Steps
Hi John,
Just got a chance to read this over. Given the statement below, I would like to add some additional information via email for their records. Sorry for the jargon, but the references should make sense to any ministry reviewer focussed on Source Water. Please let me know if you require anything further.
"Discussions with the Project Manager for Drinking Water Source Protection for Essex Region identified policies and vulnerable areas within the study limits (refer to attached email from Katie Stammler). Since the project does not include installing or altering a municipal drinking water intake no new technical work nor amendments to the source protection plan are required."

Upon further discussion with John Henderson, it has come to my attention that the proposal includes changes to the drainage network. This will eventually lead to the need for an update to the IPZ-3 and Event Based Area. Some portions of these vulnerable areas may be removed through a s. 51 amendment to the SPP and AR if drains are removed. If new drains are installed or are relocated, the vulnerable areas will need to be extended, which will require either a s. 34 amendment to the SPP and AR or would be included in the Essex Region SPA s. 36 work plan. We would ask that the proponent provide mapping of the final changes to the drainage network to ERCA so that the changes to vulnerable areas can be made appropriately.

Follow us on Twitter: @essexregionca

From: John Henderson
Sent: Friday, December 15, 2017 11:28 AM
To: Katie Stammler KStammler@erca.org
Subject: FW: ULR - Next Steps

Hi Katie,
Please look at Jayson response to the Source Protection section in attached Table B and provide your comments.
Thank you,

	John Henderson, P. Eng. Essex Region Conservation Authority (ERCA) 360 Fairview Avenue West, Suite 311
Essex Region	Essex, Ontario N8M 1Y6
Conservation Authority	$519-776-5209$ ext. 246
Fax: 519-776-8688	

[^1]From: Innes, Jayson [mailto:jayson.innes@stantec.com]
Sent: Thursday, December 14, 2017 9:32 AM
To: John Henderson JHenderson@erca.org
Cc: Godo, Anna agodo@citywindsor.ca; Phil Bartnik pbartnik@tecumseh.ca; Vendrasco, Wira H.D. wvendrasco@citywindsor.ca; Winterton, Mark mwinterton@citywindsor.ca; Richard Wyma RWyma@erca.org; Tim Byrne TByrne@erca.org
Subject: RE: ULR - Next Steps
Attached is a draft version of MOECC Table B for internal review.

APPENDIX N

Cultural Heritage Resources

Stantec

Cultural Heritage Resource Assessment, Upper Little River Watershed Environmental Assessment

FINAL REPORT

June 24, 2021

Prepared for:

Essex Region Conservation Authority 360 Fairview Avenue West, Suite 311 Essex, ON N8M 1Y6

Prepared by:
Stantec Consulting Ltd. 300W-675 Cochrane Drive Markham, ON L3R OB8

File: 160311265

Table of Contents

EXECUTIVE SUMMARY I
ABBREVIATIONS IV
GLOSSARY V
1.0 INTRODUCTION 1.1
1.1 STUDY PURPOSE AND OBJECTIVES 1.1
2.0 METHODOLOGY 2.1
2.1 BACKGROUND HISTORY 2.1
2.2 MUNICIPAL AND AGENCY CONSULTATION 2.2
2.3 FIELD PROGRAM 2.2
2.4 EVALUATION OF CULTURAL HERITAGE VALUE OR INTEREST 2.2
2.4.1 Ontario Regulation 9/06 2.2
3.0 HISTORICAL DEVELOPMENT 3.1
3.1 INTRODUCTION 3.1
3.2 PHYSIOGRAPHY 3.1
3.3 SURVEY AND SETTLEMENT 3.3
$3.4 \quad 19^{\text {TH }}$ CENTURY DEVELOPMENT 3.4
$3.5 \quad 20^{\text {TH }}$ CENTURY DEVELOPMENT 3.6
4.0 RESULTS 4.1
4.1 AGENCY AND MUNICIPAL CONSULTATION 4.1
4.2 FIELD PROGRAM 4.2
4.2.1 Potential Heritage Resources 4.2
4.3 EVALUATION OF CULTURAL HERITAGE VALUE OF INTEREST 4.2
5.0 PROPOSED UNDERTAKING 5.1
5.1 DESCRIPTION OF UNDERTAKING 5.1
6.0 EVALUATION OF ANTICIPATED IMPACTS AND MITIGATION OPTIONS 6.1
7.0 RECOMMENDATIONS 7.1
7.1 AVOIDANCE OF CULTURAL HERITAGE RESOURCES 7.1
7.2 SITE PLAN CONTROLS 7.1
7.3 CONDITION SURVEYS AND VIBRATION MONITORING 7.1
7.4 DEPOSIT COPIES 7.1
8.0 CLOSURE 8.1
9.0 SOURCES 9.1

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

LIST OF TABLES
Table 4-1: Identified and Protected Heritage Resources within the Study Area. 4.1
Table 4-2: \quad Summary of Determination of CHVI 4.3
LIST OF FIGURES
Figure 1: Project Location 1.3
Figure 2: Study Area 1.5
Figure 3: Township of Sandwich 1881 3.1
Figure 4: Potential Heritage Resources 4.29
Figure 5: Identified Heritage Resources 4.31

LIST OF APPENDICES

APPENDIX A INVENTORY OF HERITAGE RESOURCES

APPENDIX B CONCEPTUAL PROJECT DRAWINGS

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Executive Summary

Stantec Consulting Ltd. (Stantec) was retained by Essex Region Conservation Authority (ERCA), in conjunction with the City of Windsor and the Town of Tecumseh, to prepare a Cultural Heritage Resources Assessment (CHRA) report as part of the Upper Little Watershed Environmental Assessment (EA) (the Project). The purpose of the Project is to determine a preferred approach to providing stormwater management control measures for the developing lands upstream of the E.C. Row Expressway and contributing to Upper Little River. The Study Area is contained partially within the City of Windsor and partially within the Town of Tecumseh, Ontario. It extends roughly from west to east from Concession Road 6, in the City of Windsor to Lesperance Road in the Town of Tecumseh, and north to south from the E.C. Row Expressway to the South Talbot Road.

As part of the Upper Little Watershed EA a CHRA has been completed to identify heritage resources, including built heritage and cultural heritage landscapes, present within, and adjacent to, the Study Area. Potential heritage resources were identified through consultation and a windshield survey, inventoried, and evaluated according to Ontario Regulation (O. Reg.) 9/06, the criteria for determining cultural heritage value or interest (CHVI) (Government of Ontario 2006a). Where CHVI was identified, the resource was mapped, and recommendations made for further study.

In order to identify protected properties, the Ministry of Heritage, Sport, Tourism and Culture Industries (MHSTCI), the Ontario Heritage Trust (OHT), City of Windsor, and Town of Tecumseh were consulted. As a result of the consultation, eight previously recognized properties were identified in relation to the Study Area. Four of these properties were determined to be situated within the CHRA Study Area.

A windshield survey was undertaken to identify potential heritage resources within, and adjacent to, the Study Area and confirm the presence of previously identified potential heritage properties. Where identified, the potential heritage properties were photographed from the public right-of-way. A total of 72 properties were identified as potential heritage properties. In each case evaluation of the CHVI of the property was undertaken according to O. Reg. 9/06. Each potential heritage resource was considered both as an individual structure and as a landscape. Following evaluation, 14 cultural heritage resources (CHRs) were identified within the Study Area.

This CHRA provides general measures to avoid potential impacts to the CHRs. The preferred alternative should be designed to avoid the identified CHRs. Project components should be planned and undertaken in a manner to avoid the built heritage and cultural heritage landscape attributes of the identified CHRs. Site plan controls are recommended to be put in place prior to construction activities. This includes mapping of CHRs on construction maps, communication to the construction team leads on their locations, and physical protective measures such as temporary fencing. If Project work occurs within 50 metres of CHRs, it is recommended that a qualified building conditions specialist or geotechnical engineer with previous experience working with heritage structures be consulted to identify appropriate vibration mitigation measures in advance of construction. Mitigation measures for vibration may include developing

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

an appropriate vibration setback distance, a vibration attenuation study, and/or a construction monitoring program.

The Executive Summary highlights key points from the report only; for complete information and findings, the reader should examine the complete report.

Project Personnel

Project Manager:

Task Manager:

Report Writers:

GIS Specialist:

Administrative Assistant:

Quality Reviewer:

Independent Reviewer:

Acknowledgments

Proponent Contact:
John Henderson, Essex Region Conservation Authority

Abbreviations	
BHR	Built Heritage Resource
CHL	Cultural Heritage Landscape
CHR	Cultural Heritage Resource
CHRA	Cultural Heritage Resource Assessment
CHVI	Cultural Heritage Value or Interest
EA	Environmental Assessment
ERCA	Essex Region Conservation Authority
MTCS	Ministry of Tourism, Culture and Sport
OHA	Ontario Heritage Act
OHT	Ontario Heritage Trust
O. Reg.	Ontario Regulation
PPS	Provincial Policy Statement
RoW	Right-of-Way
SWM	Stormwater Management

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Glossary

Built Heritage Resource	(BHR) Refers to a single building, structure, monument, installation or remains determined to be of cultural heritage value or interest (CHVI) following evaluation according to Ontario Regulation
(O. Reg.) 9/O6. In addition, this includes properties protected under	
the Ontario Heritage Act (OHA) or listed by local, provincial, or	
federal jurisdictions. This may include residences, barns, bridges,	
and similar features (based on definition provided in the 2020	
Provincial Policy Statement (PPS) (Government of Ontario 2020)).	
Cultural Heritage Landscape	
	(CHL) Refers to a defined geographical area modified by human activities and determined to be of CHVI following evaluation according to O. Reg. 9/06. In addition, this includes properties protected under the OHA or listed by local, provincial, or federal jurisdictions. This may include grouping(s) of individual heritage
features such as structures, spaces, archaeological sites, and	
natural elements, which together form an important type of heritage	
form, distinctive from that of its constituent elements or parts (based	
on definition provided in the PPS) (Government of Ontario 2020).	

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Project Location
Protected Heritage Property

Study Area

Refers to the stormwater management (SWM) corridor boundary.
Refers to properties which are designated under, or subject to an easement made under, the OHA, as well as properties identified by provincial authorities and prescribed public bodies as a provincial heritage property. In addition, protected heritage property includes those identified by federal or international authorities as such including, but not limited to, Parks Canada or UNESCO (based on definition provided in the PPS) (Government of Ontario 2020).

Refers to all properties through which the Project Location is proposed to pass through plus a 50 -metre area surrounding the SWM corridor boundary. This area was used to define the limit of site investigations and is based on an understanding of property parcel boundaries.

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Introduction
June 24, 2021

1.0 INTRODUCTION

1.1 STUDY PURPOSE AND OBJECTIVES

As part of the Upper Little Watershed Environmental Assessment (EA) (the Project), a Cultural Heritage Resource Assessment (CHRA) has been completed to identify heritage resources, including built heritage and cultural heritage landscapes, present within, and adjacent to, the Study Area. The purpose of the project is to determine a preferred approach to providing stormwater management (SWM) control measures for the developing lands upstream of the E.C. Row Expressway and contributing to Upper Little River. The objective of the Project is to ensure that urbanization of the watershed can occur in a fashion that will not lead to negative impacts on the receiving systems including increased flood risk and the impairment of natural watercourse features. The Project would allow for future enhancement of the watercourse, stream margins, and wetlands. The SWM system should minimize the impact of urban development on the natural environment and be integrated as an amenity within the existing drain system and the open space system. It should also be capable of meeting applicable water quality and quantity requirements while minimizing any potential impacts on waterfowl within the vicinity of the Windsor International Airport related to waterfowl.

The Study Area is contained partially within the City of Windsor and partially within the Town of Tecumseh, Ontario (Figure 1 and Figure 2). It extends roughly from west to east from Concession Road 6, in the City of Windsor to Lesperance Road in the Town of Tecumseh, and north to south from the E.C. Row Expressway to the South Talbot Road. The main branch of Little River originates south of Highway 401 and generally flows north through a well-defined system of municipal drains and channels towards the Detroit River and Lake St. Clair. The drainage area contributing to Upper Little River upstream of the E.C. Row Expressway is approximately 45 square kilometres.

As part of the CHRA report, potential heritage resources were identified through consultation and a windshield survey, inventoried, and evaluated according to Ontario Regulation (O. Reg.) 9/06, the criteria for determining cultural heritage value or interest (CHVI) (Government of Ontario 2006a). A land use history was completed to provide a cultural context for the Study Area and to provide a background upon which to base evaluations. Where CHVI was identified, the resource was mapped and recommendations made for further study. The objectives of the CHRA are summarized below:

- Prepare a land use history of the Study Area for use in the identification and evaluation of heritage resources;
- Identify potential heritage resources within the Study Area through a preliminary property inspection from the public right-of-way (RoW);
- Evaluate the CHVI of the potential heritage resources to determine the number of heritage resources present; and
- Prepare recommendations for future work where heritage resources were identified.

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Methodology
June 24, 2021

2.0 METHODOLOGY

The requirement to consider cultural heritage in Municipal Class EAs is discussed in the Municipal Class Environmental Assessment Manual (MCEA Manual) (Municipal Engineers Association 2015) and the revised 2020 Provincial Policy Statement (PPS) (Government of Ontario 2020). The MCEA Manual considers cultural environment heritage, including built heritage resources and cultural heritage landscapes as well as archaeological resources, as one in a series of environmental factors to be considered when undertaking an MCEA, particularly when describing existing and future conditions, development alternatives, and determination of the preferred alternative.

The MCEA Manual further suggests that cultural heritage resources that retain heritage attributes should be identified early in the EA process and avoided where possible. Where avoidance is not possible, potential effects to these attributes should be identified and minimized. Adverse impacts should be mitigated according to provincial and municipal guidelines. It is suggested that this happen early in the process so that potential impacts to significant features can be included in an understanding of project impacts and plans established to mitigate these impacts.

In addition to requirements outlined in the MCEA Manual, provisions made under the PPS were also considered in the preparation of the study. Section 2.6 of the PPS addresses cultural heritage in the land use planning process and as such was considered. The applicable provisions include:
> 2.6.1 - Significant built heritage resources and significant cultural heritage landscapes shall be conserved.
> 2.6.3 - Planning authorities shall not permit development and site alteration on adjacent lands to protected heritage property except where the proposed development and site alteration has been evaluated and it has been demonstrated that the heritage attributes of the protected heritage property will be conserved.

(Government of Ontario 2020: 31)

2.1 BACKGROUND HISTORY

The CHRA was composed of a program of archival research focused on the Study Area. To familiarise the study team with the Study Area, local historical resources were consulted, archival documents were reviewed, and a summary of the historical background of the local area was prepared. Specifically, historical mapping from 1877, 1881, 1912, 1913, 1920, 1931, 1936, 1940, 1961, 1962, and 1975 was consulted to identify the presence of structures, settlements, and other potential heritage resources in advance of the field program.

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Methodology
June 24, 2021

2.2 MUNICIPAL AND AGENCY CONSULTATION

Listings of provincially and locally designated properties, districts, and easements for each municipality were collected from the Ontario Heritage Trust (OHT), the Ministry of Heritage, Sport, Tourism and Culture Industries (MHSTCI), the City of Windsor, and the Town of Tecumseh. Consultation with these interested agencies and municipalities within which the project is proposed was undertaken to determine the presence of designated, listed, or registered heritage properties within the Study Area.

Recognition of protected properties varies greatly and is dependent on the level of CHVI identified or, in some cases, the level of investigation undertaken. For the purpose of this study, any property previously identified by municipal staff or provincial agencies as containing, or having the potential to contain, CHVI was determined to be a protected property.

2.3 FIELD PROGRAM

A vehicular windshield survey was conducted on April 19, 2018 and May 11, 2018 from the RoW. At this time, the Study Area was surveyed for potential heritage resources, including both potential built heritage resources and cultural heritage landscapes. Where identified, these were photographed, and their locations recorded. Characteristics of each potential heritage resource were noted while in the field and recorded.

In general, heritage resources of more than 40 years of age were evaluated during the survey for their potential to satisfy O. Reg. 9/06 criteria. The use of the 40-year threshold is generally accepted by both the federal and provincial authorities as a preliminary screening measure for CHVI. This practice does not imply that all properties more than 40 years of age are inherently of significant heritage value, nor does it exclude exceptional examples constructed within the past 40 years of being of significant cultural heritage value.

2.4 EVALUATION OF CULTURAL HERITAGE VALUE OR INTEREST

The criteria for determining CHVI is defined by O . Reg. 9/06. Each potential heritage resource was considered both as an individual structure and as cultural landscape. Where CHVI was identified, a structure or landscape was assigned a cultural heritage resource (CHR) number and the property was determined to contain a heritage resource. Evaluations for each property are contained in Appendix A.

2.4.1 Ontario Regulation 9/06

In order to identify CHVI at least one of the following criteria must be met:

1. The property has design value or physical value because it,
i. is a rare, unique, representative or early example of a style, type, expression, material or construction method,
ii. displays a high degree of craftsmanship or artistic merit, or

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Methodology
June 24, 2021
iii. demonstrates a high degree of technical or scientific achievement.
2. The property has historical value or associative value because it,
i. has direct associations with a theme, event, belief, person, activity, organization or institution that is significant to a community,
ii. yields, or has the potential to yield, information that contributes to an understanding of a community or culture, or
iii. demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.
3. The property has contextual value because it,
i. is important in defining, maintaining or supporting the character of an area,
ii. is physically, functionally, visually or historically linked to its surroundings, or
iii. is a landmark.
(Government of Ontario 2006a).

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Historical Development
June 24, 2021

3.0 HISTORICAL DEVELOPMENT

3.1 INTRODUCTION

The Study Area is located within the City of Windsor and the Town of Tecumseh, Ontario. It extends roughly from west to east from Concession Road 6, in the City of Windsor to Lesperance Road in the Town of Tecumseh, and north to south from the E.C. Row Expressway to the South Talbot Road.

Specifically, the Study Area spans across the following historical lots and concessions of the former Township of Sandwich, within the County of Essex, Ontario.

- Lots 141 to 150, Concession 1, Petit Cote
- Lots 98 to 150, Concession 3, Petit Cote
- Lots 12 to 16 , Concession 6
- Lots 11 to 17, Concession 7
- Lots 10 to 18, Concession 8
- Lots 10 to 18, Concession 9
- Lots 13 to 19, Concession 10
- Lots 300 to 304, Talbot Road North Side
- Lots 300 to 302, Talbot Road South Side

The following sections outline the historical development of the Study Area from the period of settlement to the $20^{\text {th }}$ century.

3.2 PHYSIOGRAPHY

The Study Area is situated within the St. Clair Clay Plains physiographic region of southwestern Ontario (Chapman and Putnam 1984: 113). The physiography of the region highly influenced the late settlement and farming in the County of Essex, until more advanced artificial drainage was implemented in the late $19^{\text {th }}$ and early $20^{\text {th }}$ centuries.

The St. Clair Clay Plains is an extensive area of clay plains covering 5,880 square kilometres in Counties of Essex, Kent, and Lambton. The region is fairly flat with little relief, lying between approximately 175 to 215 metres above sea level. The area during the glacial period was covered by Glacial Lake Whittlesey and Lake Warren, which failed to leave deep stratified beds of sediment on the underlying clay. The majority of Essex County is till plains smoothed by shallow deposits of lacustrine clay which settled in the depressions while the knolls were being lowered by wave action. Within Essex County, the underlying rock is limestone (Chapman and Putnam 1984: 147).

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Historical Development
June 24, 2021

The majority of the region has a history of poor drainage, which required the installation of dredged ditches and tile underdrains to have satisfactory conditions for crop growth and tillage (Chapman and Putnam 1984: 149). The issue of drainage was addressed beginning in 1869 with the first Ontario Drainage Act. The act provided municipal and provincial funding to land owners for the construction of drains in southwestern Ontario (Burr 2014: 22). Throughout the late $19^{\text {th }}$ to the early $20^{\text {th }}$ century new innovations established effective drainage throughout the county to facilitate improved agriculture. Still seen on the landscape today within the Study Area are deep ditches, with large culverts as part of driveways (Plate 1). There are also several different drains within the Study Area, including for example the Little River Drain which crosses Baseline Road (Plate 2).

Plate 1: Deep ditch and culvert driveway example on EC Row Avenue East

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Historical Development
June 24, 2021

Plate 2: Little River Drain

3.3 SURVEY AND SETTLEMENT

On January 1, 1800, in the Act for the Better Division of the Province, the Townships of Rochester, Mersea, Gosfield, Maidstone, Sandwich, and Malden were created as part of the County of Essex. The townships of Essex County were surveyed by Patrick McNiff, Abraham Iredell, and Thomas Smith (Clarke 2001: 60, 70).

Among the counties in Ontario, Essex County was the first to be settled (Corporation of the County of Essex 1992: 1). Euro-Canadian settlement in the area of Essex County began as early as 1747 as French settlers began living along the banks of the Detroit River (County of Essex 2019). Following the American War of Independence (1775-1783), settlers began to settle further east of the Detroit River along the north shore of Lake Erie (Corporation of the County of Essex 1992: 2).

The Township of Sandwich was surveyed between 1792 and 1793 by Patrick McNiff. McNiff did not complete the full survey of the township, with additional surveys undertaken by Abraham Iredell in 17961797, and Mahlon Burwell in 1824 (Clarke 2001: 67). Due to the township's location bordered on the north by Lake St. Clair and the west by the Detroit River, its French settlers prior to survey, and swamp areas, the township lots are irregularly laid out. Adjacent to the watercourses, in Concessions 1 to 3

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Historical Development
June 24, 2021

Petite Cote, the township has long narrow lots, while the remaining south and east portions of the township utilize the double-front survey system. This survey system created a rectangular pattern of 100acre lot allowances surrounded by road allowances (Plate 3).

Plate 3: Double-Front Survey System (Dean 1969)

The village of Sandwich began to develop in 1788 to the northwest of the Study Area when a one square mile block of land was acquired by the British from the Chiefs of the Wyandottes/Huron, the Chippewa, and Ottawa for the price of three hundred pounds worth of supplies. It was laid out into one-acre sections and 24-acre residential lots. It was named for the English borough of Sandwich in Kent. Sandwich was established as the new county town by the Honourable Peter Russell in 1796 and its administrative function stimulated rapid growth. Industries included fur, salt, brick manufacturing, and fish hatcheries (Neal 1909: 133-134).

3.4 19TH CENTURY DEVELOPMENT

In the early $19^{\text {th }}$ century, road development helped to increase accessibility in the Study Area and the spread of settlers throughout the township. In 1811, Colonel Talbot commissioned Mahlon Burwell to survey the Talbot Road along the north shore of Lake Erie. The construction of the roadway was interrupted by the War of 1812, before reaching Essex County in 1818 (County of Essex 2019). The Talbot Road was completed through the Study Area between the hamlet of Maidstone and the Village of Sandwich.

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Historical Development
June 24, 2021

Northwest of the Study Area, in July 1812, the village of Sandwich was the first community in Upper Canada to be attacked by American forces. That month, under General Hull, 2,000 men crossed the Detroit River, forcing residents and British army in Sandwich to abandon the community. The following month, under the command of General Isaac Brock, the British army, and First Nations warriors, retaliated and the American forces were overtaken. Sandwich was attacked again in September 1813, by the American Forces under General William Henry Harrison. When peace came in 1814, the Crown compensated Sandwich for their losses during the conflict (City of Windsor 2021a).

In 1817, Sandwich was formally incorporated as a police village (County of Essex 2019). In the 1830s, the town became an important terminal on the Underground Railroad following the Emancipation Act in 1833. Refugees numbering between 30,000 and 100,000 made their journey into Upper Canada by way of Sandwich, with many settling in the town (City of Windsor 2021a). North of the Study Area, the Tecumseh Road was constructed in 1838, running parallel to Lake St. Clair and Detroit River between the community of Ryegate (now Tecumseh) and Sandwich (Tecumseh 2019).

Sandwich was incorporated as a town in 1858, with Charles Baby as the first mayor (Neal 1909: 133134). By the mid-19 ${ }^{\text {th }}$ century Sandwich was a well-established town, with a grist and carding mill, two tanneries, a door and blind factory, a saw mill, a foundry, a brick yard, a shingle factory, two wagon shops, a bakery, a gunsmith, seven general stores, four groceries, five hotels, five saloons, a boot and shoe factory, two potash factories, and a brewery (Sutherland \& Co. 1866: 93).

Although the village of Sandwich was chosen as the location of Essex County offices, the Town of Windsor eventually outstripped the former in size and industry. Windsor, situated on the banks of the Detroit River, northwest of the Study Area, was originally founded as South Detroit by James Dougall of Paisley, Scotland, who bought the land, laid it out as a village plot, and opened a store in 1830. Early settlers in Windsor included a number of families: Baby, Dumouchelle, Goyeau, Jannesse, Langlois, Marentette, Meloche, and Oullette (Belden 1881: 7). In 1846, Windsor had a population of only 300 (Smith 1846: 221).

In 1844, the township population was 3,624 , outside of the towns on the Detroit River. Agriculture remained the main industry in the township in the mid-19 ${ }^{\text {th }}$ century, with residents supplying products such as poultry to Windsor and the City of Detroit. By 1846, the township had 10,797 acres under cultivation out of a total of 51,476 acres (Smith 1846: 104).

After the Municipal Corporations Act of 1850, which provided a means of government for towns and counties, Essex was united with the Counties of Kent and Lambton. In June 1853, Essex became an independent county (County of Essex 2019). In 1853, the Great Western Railway was constructed through the township, with the line running through Ryegate and terminating at Windsor. Windsor was incorporated as a town in 1854, with S.S. Macdonnell as the first reeve (Belden 1881: 7). By 1866, its population had increased to 4,500 (Neal 1909:136). The arrival of the railway and the development of a port marked the beginning of significant industrial development in Windsor. Several areas that are now within the city limits, such as Walkerville and Ford City, were developed in the late $19^{\text {th }}$ century (Archaeological Services Inc. 2008). In 1892, Windsor was incorporated as a City (County of Essex 2019).

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Historical Development
June 24, 2021

By the late $19^{\text {th }}$ century, the Town of Sandwich had become a suburb of Windsor, with a population in 1881 of 1,054 (Belden 1881: 9). Outside the town, in 1861, the township had been divided into two distinct east and west municipalities. The Study Area fell within the Township of Sandwich East (County of Essex 2019). By 1881, the Township of Sandwich East was well settled with a population of 3,837 (Belden 1881: 9). The 1881 township map within the Illustrated Historical Atlas of the Counties Essex and Kent, shows the rural Study Area (Figure 3). The majority of development in the Study Area is along the Talbot Road, with a few farmsteads north of the main roadway. In 1893, the Township of Sandwich East was further subdivided, with the creation of the Township of Sandwich South, with the Study Area within both boundaries (Town of Tecumseh 2019).

The Windsor Subdivision of the Canadian Pacific Railway runs east - west across the northern portion of the Study Area. This railway is present on McPhillips' 1898 Plan of the Township of Sandwich (McPhillips 1898). Part of the Trans-Canada railway commissioned by the government in 1880, it reached Windsor in 1890, and the line is still in operation today (Andreae 1997).

$3.5 \quad 20^{\text {TH }}$ CENTURY DEVELOPMENT

In the early $20^{\text {th }}$ century, the Study Area remained within a rural part of the Townships of Sandwich East and Sandwich South, until the development of better roadways and an airport in the 1920s. In 1920, the Department of Public Highways (DPHO) assumed ownership of roadways between Windsor and Niagara Falls for the creation of Highway 3. Within the County of Essex, the highway remained under municipal authority. The Highway was designated as Provincial Highway 3 in 1925, and re-designated as King's Highway in 1930 (Bevers 2020).

Major development occurred adjacent to the Study Area with the opening of the Walker Airport on September 8, 1928. Following the Great Depression in the 1930s, the airport was purchased in 1940 by the City of Windsor. The City also purchased surrounding lands for the construction of three permanent runways, administration buildings, and a control tower (Weeks 2015).

North of the Study Area, the former community of Ryegate had been incorporated in 1921 as the Town of Tecumseh, a municipality separate from the Township of Sandwich East. That year, the town had a population of 978 . The town grew in the 1930s with the establishment of the Green Giant Factory (Town of Tecumseh 2019). Northwest of the Study Area, the Ambassador Bridge was opened in 1929 between Canada and the United States and became a vital trade link between the two nations. The high trade aspirations were short lived with the onset of the Great Depression. Windsor and Sandwich were hit hard by the depression and it resulted in the loss of thousands of heavy industry and manufacturing jobs. The provincial government, in an effort to save tax dollars, passed a bill to streamline municipal governments. As a result, Sandwich, East Windsor, and Walkerville, were annexed by the City of Windsor in 1935 (City of Windsor 2021a).

In the late 1950s, properties within and adjacent to the Study Area were purchased for the construction of a new highway into the City of Windsor. Construction of the E.C. Row Expressway, named for the President of Chrysler Canada, began in 1970. Construction and expansion contracts to the highway continued into the late $20^{\text {th }}$ century (Oiamo et al 2016:189).

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Historical Development
June 24, 2021

In the 1960s, the City of Windsor continued to expand through annexations of surrounding towns and townships. In 1966, the City of Windsor annexed the Townships of Sandwich East and Sandwich South (Town of Tecumseh 2019). The City of Windsor had a stable population between 1966 and 1996, with an average population of about 195,000 (City of Windsor 2021b).

In 1999, the east portion of the Study Area was annexed by the Town of Tecumseh as part of the reorganization of Essex County (Town of Tecumseh 2019). In 2003, the City of Windsor annexed 23 square kilometres from the Town of Tecumseh (City of Windsor 2021c). With its location adjacent to the City of Windsor, and the City's airport, Tecumseh is a suburban community. In 2006, the town had a population 24, 224 (Statistics Canada 2017).

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021

4.0 RESULTS

4.1 AGENCY AND MUNICIPAL CONSULTATION

In order to identify heritage resources within the Study Area, the MHSTCI, OHT, City of Windsor, and Town of Tecumseh were consulted.

At the provincial level, Karla Barboza, Team Lead, Heritage, with the MHSTCI, confirmed that there are no provincial heritage properties within or adjacent to the Study Area. Thomas Wicks, Heritage Planner with the OHT, reported that there are no OHT conservation easement sites or OHT-owned properties within or adjacent to the Study Area.

At the municipal level, staff were consulted to determine the presence of municipally protected heritage properties. Table 4-1 provides an overview of the identified heritage resources in relation to the Study Area. Kristina Tang, Planner II - Revitalization \& Policy Initiatives, Planning \& Building Services, City of Windsor, identified five properties as heritage resources in relation to the Study Area. Three of the properties were determined to be situated within the Study Area. Chad Jeffery, Manager Planning, Town of Tecumseh, provided a map of heritage resources in the Town of Tecumseh which identified three properties as heritage resources in relation to the Study Area. One of the properties was determined to be situated within the Study Area.

Table 4-1: Identified and Protected Heritage Resources within the Study Area

Municipality	Location/Municipal Address	Level of Recognition	Relationship to the Study Area
City of Windsor	2600 Airport Rd (3200 County Rd 42)	Listed on municipal register	Outside the Study Area
City of Windsor	5680 Baseline Rd	Listed on municipal register	Inside the Study Area
City of Windsor	4639 9th Concession Rd	Listed on municipal register	Inside the Study Area
City of Windsor	4799 9th Concession Rd	Listed on municipal register	Outside the Study Area
City of Windsor	4601 County Rd 17 (10th Concession)	Listed on municipal register	Inside the Study Area
Town of Tecumseh	2300 Banwell Road	Designated Heritage Property	Inside the Study Area
Town of Tecumseh	11945 Intersection Road	Listed on municipal register	Inside the Study Area
Town of Tecumseh	2725 Highway 3 (Talbot Road)	Heritage Property Candidate	Outside the Study Area

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021

4.2 FIELD PROGRAM

4.2.1 Potential Heritage Resources

As described in Section 2.3, a windshield survey was undertaken to identify potential heritage resources situated within, and adjacent to, the Study Area and confirm the presence of previously identified protected properties. Where identified, the potential heritage resource was photographically documented from the public RoW.

During the course of the survey, 72 individual sites were identified as containing potential heritage resources (Figure 4). Of those identified, five had been previously recognized by municipal heritage staff through listing on their municipal heritage register. A summary of these potential heritage resources is contained in Table 4-2 and Appendix A.

The Study Area contains a mixture of residential and commercial structures. The majority of the potential heritage resources date to the mid-20 ${ }^{\text {th }}$ century, between approximately 1940 to 1975 , based on topographic mapping. Eight properties date to the late $19^{\text {th }}$ to early $20^{\text {th }}$ century, specifically between 1882 and 1912, determined through historic and topographic mapping. Six of these eight properties display a similar one and a half storey structure with a T-shaped plan, while the remaining two are red brick two storey structures. Two of the eight properties are farmsteads.

4.3 EVALUATION OF CULTURAL HERITAGE VALUE OF INTEREST

Where a potential heritage resource was identified within the Study Area, an evaluation of the CHVI of the property was undertaken. As described in Section 2.5, each potential heritage resource was evaluated according to O. Reg. 9/06, the criteria for determining CHVI. Detailed evaluations for each property are contained within Appendix A. In addition, each potential heritage resource was considered both as an individual structure and as part of a landscape. Where CHVI was identified, a structure or landscape was assigned a CHR number and the property was determined to contain a heritage resource. There were 72 potential heritage resources identified (Figure 4), 14 of which were determined to be cultural heritage resources (Figure 5). Table 4-2 summarizes the findings.

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
1667 Shawnee Road	4 a	No	Residence		None identified	No	N/A
3780 Lauzon Road	4d	No	Farmstead		None identified	No	N/A
3805 Lauzon Road	4d	No	Residence		None identified	No	N/A

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
Banwell Road (railway line)	4e	No	Railway Line		Railway line: Layout of the railway line.	Yes	CHR-1
2300 Banwell Road	4e	Yes	Cemetery		Cemetery: Grave markers, provincial plaque, and mature deciduous trees.	Yes	CHR-2
11945 Intersection Road	4e	Yes	Farmstead		Residence: Two storey structure, high-pitched hip roof, brick chimney, hip dormer, symmetrical exterior, red brick exterior, covered full width porch, $3 / 1$ wood windows, and stone foundation. Barn: Timber frame structure and side gable roof. Landscape: Tree-lined laneway, mature maple and white pines.	Yes	CHR-3

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
3945 Lauzon Road	4 g	No	Residence	I	None identified	No	N/A
7816 County Road 42	4 g	No	Residence		None identified	No	N/A
7955 County Road 42	4 g	No	Residence		Associative: Connection to the Sikh community in Windsor and the local area, potential to yield information about the Sikh community and their influence on Windsor. Contextual: Guardwara Khalsa Parkash Windsor temple which acts as a landmark along County Road 42.	Yes	CHR-4

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
8421 County Road 42	4 g	No	Residence/Commercial		None identified	No	N/A
8667 County Road 42	4 g	No	Residence		None identified	No	N/A
9244 County Road 42	4 g	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
$41207^{\text {th }}$ Concession Road	4h	No	Residence		None identified	No	N/A
$41787^{\text {th }}$ Concession Road	4h	No	Residence		None identified	No	N/A
$41407^{\text {th }}$ Concession Road	4h	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
3277 Baseline Road	4h	No	Residence		None identified	No	N/A
3355 Baseline Road	4h	No	Residence		None identified	No	N/A
3415 Baseline Road	4h	No	Residence	栄登	None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
3465 Baseline Road	4h	No	Residence		None identified	No	N/A
3483 Baseline	4h	No	Residence		None identified	No	N/A
3567 Baseline	4h	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
3685 Baseline Road	4h	No	Residence		None identified	No	N/A
3745 Baseline Road	4h	No	Residence		None identified	No	N/A
3765 Baseline Road	4h	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
3825 Baseline Road	4h	No	Residence		None identified	No	N/A
3915 Baseline Road	4h	No	Residence		None identified	No	N/A
3965 Baseline	4h	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
4145 Baseline Road	4i	No	Residence	<	None identified	No	N/A
4175 Baseline Road	4i	No	Residence		None identified	No	N/A
4245 Baseline Road	4i	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
5680 Baseline Road	4i	Yes	Farmstead		Residence: One and a half storey structure, medium-pitched cross gable roof, brick chimney, and T-shaped plan. Barn: Timber frame structure, side gable roof, salt box side, wood paneled door, and wood multi-paned windows. Driveshed: one storey structure, side gable roof, and wood $2 / 2$ fixed windows. Smaller barn: side gable roof and rusticated concrete foundation. Outbuilding: horizontal wood siding, side gable roof, and wood $2 / 2$ fixed windows.	Yes	CHR-6
7295 Baseline Road	4k	No	Residence		Residence: One and a half storey structure, medium-pitched cross gable roof, gabled dormers, and T-shaped plan.	Yes	CHR-7

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
4310 County Road 17	4k	No	Outbuilding		None identified	No	N/A
8360 Baseline Road	4k	No	Residence		None identified	No	N/A
8780 Baseline Road	4k	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
3850 County Road 17	4k	No	Residence		Residence: One and a half storey structure, medium-pitched side gable roof, three-bay front façade, and stone foundation. Landscape: mature spruce trees.	Yes	CHR-8
$47218^{\text {th }}$ Concession Road	41	No	Residence		None identified	No	N/A
$47278^{\text {th }}$ Concession Road	41	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
$47748^{\text {th }}$ Concession Road	4I	No	Residence		None identified	No	N/A
48248^{th} Concession Road	41	No	Outbuildings		None identified	No	N/A
$46399^{\text {th }}$ Concession Road	4 m	Yes	Residence		Residence: Two storey structure, mediumpitched hip roof, gabled dormers, red brick exterior, covered wraparound brick, concrete and wood porch, $3 / 1$ and $4 / 1$ windows, and wood paneled door.	Yes	CHR-9

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
$50129^{\text {th }}$ Concession Road	40	No	Residence		None identified	No	N/A
4610 County Road 17	4 n	No	Residence		None identified	No	N/A
4601 County Road 17	4 n	Yes	Residence		Residence: One and a half storey structure, medium-pitched side gable roof, stone clad exterior, three-bay front façade, and stone clad front porch.	Yes	CHR-10

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
5790 North Talbot Road	4 r	No	Residence		None identified	No	N/A
$9^{\text {th }}$ Concession Road (former railway line)	4 r	No	Former railway line		Recreational Trail: Layout of the former Canada Southern Railway Line including linear corridor lined with naturalized vegetation.	Yes	CHR-14
3940 Highway 3	4 q	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT
Results
June 24, 2021
Table 4-2: Summary of Determination of CHVI

Municipal Address	Figure Number	Previous Heritage Recognition	Resource Type	Photograph	Identified Attributes	CHVI	CHR Number
5075 North Talbot Road	4r	No	Residence		None identified	No	N/A

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Proposed Undertaking
June 24, 2021

5.0 PROPOSED UNDERTAKING

5.1 DESCRIPTION OF UNDERTAKING

The Upper Little River Watershed EA has been prepared to determine a preferred approach to providing SWM control measures for the developing lands upstream of the E.C. Row Expressway and contributing to Upper Little River. A Master Plan Approach 2 approach was completed for this EA study. This approach identified the problem (Phase 1), developed six alternative solutions (Phase 2), developed a design concept for a portion of the Study Area (Phase 3), and documented the process in the Environmental Study Report (Phase 4) (Stantec 2021). No Phase 5, Implementation, was completed as part of this Master Plan Approach 2.

The Environmental Study Report selected Alternative 6 as the preliminary preferred alternative as it provides all stormwater management controls before out-letting to the downstream watercourses. Each facility would be required to provide water quality, water quantity, and erosion controls on a standalone basis. In this alternative the SWM facilities are grouped into stormwater management corridors to promote natural linkages, recreational trails, and greenways. The SWM facilities can provide controls for more than one property and will be located adjacent to other facilities and a watercourse. It is anticipated that facilities would be designed and constructed as development proceeds. The Study Area for the SWM will be developed by multiple landowners and the preferred alternative supports the ability of individual landowners to proceed independently while minimizing the total number of SWM facilities.

The stormwater areas are proposed to be congregated into stormwater management corridors which can be combined with trail systems and amenity areas for the surrounding developments. The stormwater management corridor will be located beside watercourses which will accept drainage from the end-of-pipe facilities. Heavy vegetation adjacent to all water bodies and minimal open water will also be implemented in order to make water features less attractive to bird species, a specific request from the Windsor Airport. As part of this work, several of the existing municipal drains are proposed to be abandoned and several new channels will be created that align with the proposed development plan for the area. In addition, the work will include re-grading the stream channel banks to create benches or terraces, which will help dissipate energy and re-connect the bankfull channel to a floodplain area (Stantec 2021).

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Evaluation of Anticipated Impacts and Mitigation Options
June 24, 2021

6.0 EVALUATION OF ANTICIPATED IMPACTS AND MITIGATION OPTIONS

The Upper Little River EA includes conceptual designs of the preferred alternative only for a section of the Study Area (Appendix B). Accordingly, an impact assessment cannot be completed since the relationship of Project Activities to identified CHRs is not known. Thus, general mitigation options have been prepared for future cultural heritage guidance in the Study Area including more detailed EAs and planning processes. The mitigation options were developed in accordance with the MHSTCI InfoSheet \#5: Heritage Impact Assessments and Conservation Plans from the Heritage Resources in the Land Use Planning Process Cultural Heritage and Archaeology Policies of the Ontario Provincial Policy Statement, 2005 (Government of Ontario 2006b). It is recommended that buffer zones, site plan controls, and other planning mechanisms be used as mitigation measures.

In general, for the Project, the following will need to be taken into account for each CHR to eliminate any potential impacts:

- The full design of Alternative 6 should be suitably planned in a manner that avoids any identified CHRs.
- All staging and construction activities should be planned and undertaken to avoid impacts to an identified CHR.
- Site plan controls should be put in place prior to construction to prevent potential Project impacts. Site plan controls include mapping CHRs on construction mapping and physically demarcating these properties to communicate the presence of these properties to construction crews. Physical protective measures should include at minimum the installation of temporary fencing around CHRs.
- If Project work is to occur within 50 metres of identified CHRs, it is recommended that a qualified building condition specialist or geotechnical engineer with previous experience working with heritage structures be consulted to identify appropriate vibration mitigation measures in advance of construction. Mitigation measures for vibration may include developing an appropriate vibration setback distance, a vibration attenuation study, and/or a construction monitoring program.
- Post-construction landscaping and rehabilitation plans should be undertaken in a manner that is sympathetic to the overall setting.

7.0 RECOMMENDATIONS

7.1 AVOIDANCE OF CULTURAL HERITAGE RESOURCES

The full design of Alternative 6 should be suitably planned in a manner that avoids any identified CHRs. Project components should be planned and undertaken in a manner to avoid the built heritage and cultural heritage landscape attributes of the identified CHRs.

7.2 SITE PLAN CONTROLS

It is recommended that site plan controls be put in place prior to construction activities to prevent potential impacts as a result of the Project. These controls should be indicated on all construction mapping and communicated to the construction team leads.

Site plan controls should include mapping CHRs within 50 metres of Project activities on construction maps and physically demarcating these properties to communicate the presence of these properties to construction crews. Physical protective measures should include at a minimum the installation of temporary fencing around CHRs. Depending on the proximity or Project activities, additional measures may be required such as stabilization of built heritage attributes in close proximity to construction work.

7.3 CONDITION SURVEYS AND VIBRATION MONITORING

If Project work is to occur within 50 metres of CHRs , it is recommended that a qualified building conditions specialist or geotechnical engineer with previous experience working with heritage structures be consulted to identify appropriate vibration mitigation measures in advance of construction. Mitigation measures for vibration may include developing an appropriate vibration setback distance, a vibration attenuation study, and/or a construction monitoring program.

7.4 DEPOSIT COPIES

To assist in the retention of historic information, copies of this report should be deposited with local repositories of historic material as well as with municipal and regional planning staff. Therefore, it is recommended that this report be deposited at the following locations:

City of Windsor Library
850 Ouellette Avenue
Windsor, ON
N9A 4M9

City of Windsor Heritage Committee
Suite 404, 400 City Hall Square East
Windsor, ON
N9A 7K6

Essex County Library, Tecumseh Branch 13675 St. Gregory's Road
Windsor, ON
N8N 3E4

Town of Tecumseh Municipal Heritage Committee 917 Lesperance Road
Tecumseh, ON
N8N 1W9

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Closure
June 24, 2021

8.0 CLOSURE

This report has been prepared for the sole benefit of Essex Region Conservation Authority, City of Windsor and Town of Tecumseh and may not be used by any third party without the express written consent of Stantec Consulting Ltd. Any use which a third party makes of this report is the responsibility of such third party.

We trust this report meets your current requirements. Please do not hesitate to contact us should you require further information or have additional questions about any facet of this report.

Yours truly,
STANTEC CONSULTING LTD.
Digitally signed
Lama Walte by Walter, Laura Date: 2021.06.25 09:36:15-04'00'
Laura Walter, MA, CAHP
Cultural Heritage Specialist
Tel: (705) 427-6044
Fax: (226) 268-5392
laura.walter@stantec.com

Tracie Carmichael, BA, B.Ed.
Managing Principal
Tel: (226) 927-3586
Fax: (519) 645-6575
tracie.carmichael@stantec.com

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Sources

June 24, 2021

9.0 SOURCES

Andreae, Christopher. 1997. Lines of Country: An Atlas of Railway and Waterway History in Canada. Erin: The Boston Mill Press.

Archaeological Services Inc. 2008. Detroit River International Crossing Study: Draft Cultural Heritage Resource Assessment. Electronic document: http://www.partnershipborderstudy.com/pdf/CulturalHeritage/WEB PracticalAltsWP CulturalHerit age April2008-appsonly.pdf. Last accessed: April 16, 2018.

Belden, H. \& Co. 1881. Illustrated Historical Atlas of the Counites of Essex and Kent, 1880-1881. Toronto: H. Belden \& Co.

Bevers, Cameron. 2020. The King's Highway 3. Electronic Document: http://www.thekingshighway.ca/Highway3.htm. Last accessed: April 16, 2018.

Burr, Christina. 2014. Canada's Victorian Oil Town: The Transformation of Petrolia from a Resource Town into a Victorian Community. Montreal: McGill-Queen's University Press.

Chapman, Lyman John and Donald F. Putnam. 1984. The Physiography of Southern Ontario. Third edition. Ontario Geological Survey Special Volume 2. Toronto: Ontario Ministry of Natural Resources.

City of Windsor. 2021a. History of Sandwich. Electronic Document: https://www.citywindsor.ca/residents/historyofwindsor/history-of-sandwich/Pages/default.aspx. Last accessed: April 16, 2018.

City of Windsor. 2021b. Land Use History. Electronic Document: https://www.citywindsor.ca/residents/planning/Plans-and-Community-Information/About-Windsor/Pages/Land-Use-History.aspx Last accessed: April 16, 2018.

City of Windsor. 2021c. History of Windsor. Electronic Document: https://www.citywindsor.ca/residents/historyofwindsor/pages/default.aspx. Last accessed: June 23, 2021.

Clarke, John. 2001. Land, Power, and Economics on the Frontier of Upper Canada. Montreal: McGillQueen's University Press.

Corporation of the County of Essex. 1992. Essex County, Then and Now. Essex: Corporation of the County of Essex.

County of Essex. 2019. Early Municipal History. Electronic Document: https://www.countyofessex.ca/en/discover-the-county/early-settlement-history.aspx. Last accessed: April 16, 2018.

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Sources

June 24, 2021

Dean, W.G. 1969. Economic Atlas of Ontario. Toronto: University of Toronto Press.

Government of Ontario. 2006a. Ontario Regulation 9/06, Criteria for Determining Cultural Heritage Value or Interest, Under the Ontario Heritage Act. Electronic Document: https://www.ontario.ca/laws/regulation/060009. Last accessed: April 16, 2018.

Government of Ontario. 2006b. InfoSheet \#5 in Heritage Resources in the Land Use Planning Process, Cultural Heritage and Archaeology Policies of the Ontario Provincial Policy Statement, 2005. Ministry of Heritage, Sport, Tourism and Culture Industries. Toronto: Queen's Printer for Ontario.

Government of Ontario. 2020. Provincial Policy Statement. Electronic Document: https://files.ontario.ca/mmah-provincial-policy-statement-2020-accessible-final-en-2020-02-14.pdf. Last accessed: June 21, 2021.

McPhillips, G. 1898. Plan of the Township of Sandwich - West, East and South of the Towns of Walkerville and Sandwich and the City of Windsor. Electronic Document. http://data2.archives.ca/nmc/n0011345 a2.pdf. Last accessed: April 16, 2018.

Municipal Engineers Association. 2015. Municipal Class Environmental Assessment. Electronic Document: http://www.municipalclassea.ca/manual/page1.html. Last accessed: April 16, 2018.

Neal, F. 1909. The Township of Sandwich (Past and Present): An Interesting History of the Canadian Frontier Along the Detroit River, Including the Territory Which Now Embrace the Present City of Windsor, the Towns of Sandwich and Walkerville and the Sandwich Townships, and Also a Brief Account of the Present County of Essex. Sandwich: Frederick Neal.

Oiamo, Tor H., Don Lafreniere, and Joy Parr. 2016. "The Windsor-Detroit Borderland: The Making of a Key North American Environment of Mobility." In Moving Natures: Mobility and the Environment in Canadian History, edited by Ben Bradley, Jay Young, and Colin M. Coates, pp. 175-198. Calgary: University of Calgary Press.

Smith, William Henry. 1846. Smith's Canadian Gazetteer. Toronto: H. \& W. Rowsell.
Stantec Consulting Ltd. 2021. Upper Little River Watershed Master Drainage and Stormwater Management Plan Environmental Assessment, Environmental Study Report, Windsor and Tecumseh, Ontario. Report on file with Stantec Consulting Ltd.

Statistics Canada. 2017. Tecumseh, T, Ontario and Ontario. Census Profile. 2016 Census. Statistics Canada Catalogue no. 98-316-X2016001. Ottawa. Released November 29, 2017. Electronic Document: https://www12.statcan.gc.ca/census-recensement/2016/dppd/prof/details/page.cfm?Lang=E\&Geo1=CSD\&Code1=3537048\&Geo2=PR\&Code2=35\&Search Text=Tecumseh\&SearchType=Begins\&SearchPR=01\&B1=All\&GeoLevel=PR\&GeoCode=353704 8\&TABID=1\&type=0. Last accessed: April 16, 2018.

Sutherland \& Co. 1866. County of Essex Gazetteer and General Business Directory. Woodstock: Sutherland \& Co.

CULTURAL HERITAGE RESOURCE ASSESSMENT, UPPER LITTLE RIVER WATERSHED ENVIRONMENTAL ASSESSMENT

Sources

June 24, 2021

Town of Tecumseh. 2019. History. Electronic Document: https://www.tecumseh.ca/en/things-to-do/history-of-tecumseh.aspx. Last accessed: April 16, 2018.

Weeks, Elaine. 2015. Walkerville Times. Electronic Document: http://www.walkervilletimes.com/37/windsor-airport.html. Last accessed: April 16, 2018.

APPENDIX A Inventory of Heritage Resources

Municipal Address: 1667 Shawnee Road
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached garage. The one storey structure has a lowpitched hip roof with asphalt shingles and a brick chimney. The residence is clad in vinyl siding and has $1 / 1$
 windows and a flat fixed wood window. The front entrance has a partial wood porch. The structure has a concrete foundation.

The residence sits on a large lot and has a mature maple tree on its front yard.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	1 of 75
A	
Title	

Municipal Address: 3780 Lauzon Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Farmstead
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and several outbuildings. The residence is a one storey structure with a high-pitched side gable roof with asphalt shingles. The structure has a brick exterior with modern
 windows. The entrance has a partial brick and concrete porch. The residence has a concrete foundation.

Situated to the rear of the residence is farm associated
outbuildings and four silos. The majority of the outbuildings are gable roof structures.
Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 5, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	2 of 75
A	
Title	

Municipal Address: 3805 Lauzon Road
Former Township or County: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1932-1940
Relationship to Project: Within the Study Area
Description: The property contains a laneway and a residence. The one storey structure has a high-pitched hip roof with asphalt shingles, and a central chimney. The exterior is clad in vinyl siding and has modern windows. The structure has a salt box side, and an undetermined
 foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	3 of 75
A	
Title	

Municipal Address: Banwell Road
Former Township: Township of Sandwich
Municipality: City of Windsor/Town of Tecumseh
Resource Type: Railway Line
Associated Dates: 1853
Relationship to Project: Within the Study Area
Description: The property contains the former Great Western Railway Line, now part of the Canadian National (CN) Railway.

Indicators of Cultural Heritage Value or Interest from O.
Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,	\checkmark	
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	\checkmark
iii.Is a landmark.		

Draft Statement of Cultural Heritage Value or Interest: This railway corridor is associated with the Great Western Railway Line that was constructed through the Township of Sandwich in 1853. The railway line operated between Windsor and Niagara Falls. The line was taken over by the Grand Trunk Railway in 1882, and the CN Railway in 1923. The railway line had a large influence on industrial development in Windsor and Tecumseh, and thus is physically and historically linked to its surroundings.

Identified Heritage Attributes: Railway line: Layout of the railway line.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-1
Completed by (name): Laura Walter	Date Completed: September 14, 2017.

Appendix	Page A
Title	4 of 75
CULTURAL HERITAGE RESOURCE/LANDSCAPE RECORD FORM	

Municipal Address: 2300 Banwell Road
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Cemetery
Associated Dates: circa 1850
Relationship to Project: Within the Study Area
Description: The property contains the Banwell Road Black Cemetery. The cemetery has six grave markers that date to the early $20^{\text {th }}$ century. The cemetery contains the graves of early black settlers to the Township of Sandwich,
 including those associated with the Underground Railroad. The property has a provincial plaque that marks the significance of The Banwell Road Area Black Settlement.

The property is designated under Part IV of the Ontario Heritage Act by the Town of Tecumseh.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii. Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: This cemetery dates to the mid-19 ${ }^{\text {th }}$ century and is associated with the early black settlers in the Township of Sandwich. Beginning in the 1830s, at least 30 families fleeing enslavement and racial oppression in the United States settled in the Banwell Road area in the Township of Sandwich.
Identified Heritage Attributes: Cemetery: Grave markers, provincial plaque, and mature deciduous tree.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-2
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Upper Little River Watershed

A \quad| Page |
| ---: |
| 5 of 75 |

Municipal Address: 11945 Intersection Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Farmstead
Associated Dates: 1882-1912
Relationship to Project: Within the Study Area
Description: The property contains a residence, a barn, and three outbuildings.

The residence is a two storey structure with a high-pitched
 hip roof with asphalt shingles and a brick chimney. The front (north) elevation has a central hip dormer. The structure has a symmetrical red brick exterior. The front elevation has a covered full width porch that is clad in stone and has brick piers. The upper exterior has $3 / 1$ wood windows. The residence has a stone foundation.
At the rear of the residence is a timber frame barn with a side gable roof that is clad in metal. The property has a tree-lined laneway, and mature maple and white pine trees.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	\checkmark
iii.Is a landmark.		

Draft Statement of Cultural Heritage Value or Interest: The construction of this two storey residence dates to between approximately 1882 and 1912, determined through historic and topographic mapping. It is a representative example of a vernacular Ontario farmhouse with Edwardian design influences. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the late $19^{\text {th }}$ to the early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: Two storey structure, high-pitched hip roof, brick chimney, hip dormer, symmetrical exterior, red brick exterior, covered full width porch, $3 / 1$ wood windows, and stone foundation. Barn: Timber frame structure and side gable roof. Landscape: Tree-lined laneway, mature maple and white pines.

Identification of CHVI: Yes
Cultural Heritage Resource Number: CHR-3
Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	6 of 75
A	

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	7 of 75
A	
Title	

Municipal Address: 3945 Lauzon Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached modern garage.

The residence is a one storey structure with a low-pitched
 hip roof with asphalt shingles. The structure has an asymmetrical exterior with vinyl cladding. The residence has modern windows and doors, and a concrete foundation. The property has a mature maple tree.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	8 of 75
A	
Title	

Municipal Address: 7816 County Road 42
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is a one storey structure with a low-pitched side gable roof with asphalt shingles. The asymmetrical
 exterior is clad in vinyl siding and brick. The residence has modern windows and doors, and an attached single-car garage. The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	9 of 75
A	

Municipal Address: 7955 County Road 42
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961 (residence), 1975-2004 (temple)
Relationship to Project: Within the Study Area
Description: The property contains the Gurdwara Khalsa Parkash Windsor a modern temple, as well as a separate residence, and detached garage. The property is
 bordered with a large concrete and metal fence.

The temple is a large three-storey massing with a flat roof. The structure has six corner towers, and one central larger tower. Each tower is top with a dome that is painted white and top with a finial. The central dome has gold paint embellishments. The concrete structure has rectangular window openings. The north and west elevations have covered carports.

The residence is a one storey structure with a low-pitched side gable roof with asphalt shingles and a brick chimney. The exterior is clad in vinyl siding. The front entrance has a partial porch and a wood paneled door. The residence appears abandoned as it is boarded up.
Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,	\checkmark	
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: This late $20^{\text {th }}$ to early $21^{\text {st }}$ century structure is associated with the Sikh community in Windsor and has the potential to yield information that contributes to an understanding of the community's development in the City. This property acts as a landmark along County Road 42, and in the local area.

Identified Heritage Attributes: Associative: Connection to the Sikh community in Windsor and the local area, potential to yield information about the Sikh community and their influence on Windsor. Contextual: Guardwara Khalsa Parkash Windsor temple which acts as a landmark along County Road 42.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-4
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	10 of 75
A	

Municipal Address: 8421 County Road 42

Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence/Commercial
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence that is situated on a commercial property, "Frank Dupuis Landscaping \& Trucking Ltd." The residence is possibly used as commercial offices. The property contains
 modern outbuildings associated with the commercial business.

The residence is a one and a half storey structure with a medium-pitched side gable roof that has asphalt shingles and a concrete block chimney. The front (north) elevation has a shed dormer. The structure is clad in brick and has modern windows. The front elevation has a partial brick and concrete porch with metal railing. The structure has a concrete block foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	11 of 75
A	
Title	

Municipal Address: 8667 County Road 42
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence, and mature spruce and maple trees.

The residence is a one storey structure with a low-pitched
 side gable roof with asphalt shingles. The exterior is clad in brick and has modern windows and doors. The front (north) entrance has a partial concrete porch clad in brick. The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	12 of 75
A	
Title	

Municipal Address: 9244 County Road 42

Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence
Associated Dates: 1932-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence. The property is bordered by a wood fence.

The residence is a one and a half storey structure with a
 medium-pitched side gable roof with asphalt shingles and a brick chimney. The front (south) elevation has a hip dormer. The structure is clad in vinyl siding and has modern windows and doors. The structure has a concrete block foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	13 of 75
A	

Municipal Address: $41207^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and outbuilding. The property has mature deciduous and coniferous trees.

The residence is a one and a half storey structure and has
 a medium-pitched gambrel roof with a brick chimney. The north and south roof elevations have large shed dormers. The exterior is clad in vinyl siding and has modern windows. The entrance has a covered partial porch with concrete steps and brick piers. The structure has an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

4. The property has design value or physical value because it,	Yes	No
iv.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
v. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
vi. Demonstrates a high degree of technical or scientific achievement.		\checkmark
5. The property has historical value or associative value because it,		\checkmark
iv.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
v. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
vi. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
6. The property has contextual value because it,		
iv.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
v.Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
vi. Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	14 of 75
A	
Title	

Municipal Address: $41787^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a laneway and residence.

The residence is a one storey structure with a highpitched side gable roof with asphalt shingles and a brick
 chimney. The exterior is clad in stone and has modern windows. The structure has a projecting entrance with a partial concrete porch that is clad in stone and has a metal railing. The foundation is undetermined.
The residence is situated behind a cedar hedge and the property has mature deciduous trees.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		
2. The property has historical value or associative value because it,		
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	15 of 75
A	
Title	

Municipal Address: $41407^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and three outbuildings.

The residence is one storey structure with a low-pitched hip roof with asphalt shingles. The exterior is clad in vinyl siding and has modern windows and doors. The structure appears to have a north addition. The residence has a
 concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	16 of 75
A	
Title	

Municipal Address: 3255 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one and a half storey structure with a low-pitched side gable roof. The structure is clad in brick and has modern windows and doors. The residence has a single-car garage.

Indicators of Cultural Heritage Value or Interest from O.
Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.

Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	17 of 75
A	
Title	

Municipal Address: 3225 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one and a half storey structure with a low-pitched hip roof with asphalt shingles and a brick chimney. The structure is clad in brick and has modern windows and doors. The split-level residence has a singlecar garage.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	18 of 75
A	
Title	

Municipal Address: 3325 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one and a half storey structure with a low-pitched hip roof with asphalt shingles. The structure is clad in brick and vinyl siding and has modern windows and doors. The split-level residence has a single-car
 garage.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	19 of 75
A	
Title	

Municipal Address: 3277 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one and a half storey structure with a low-pitched hip roof with asphalt shingles and a brick chimney. The structure is clad in brick and has modern windows and doors. The split-level residence has a double-car garage.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	20 of 75
A	
Title	

Municipal Address: 3355 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one and a half storey structure with a
 low-pitched cross gable roof with asphalt shingles. The structure is clad in brick and has modern windows and doors. The split-level residence has a double-car garage.

Indicators of Cultural Heritage Value or Interest from O.
Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	21 of 75
A	
Title	

Municipal Address: 3415 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a lowpitched side gable roof with asphalt shingles and a brick chimney. The structure is clad in stone and has modern windows and doors. The residence has an attached double-car garage.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
iv. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
i. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
ii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	22 of 75
A	
Title	

Municipal Address: 3465 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a lowpitched side gable roof with asphalt shingles and a brick chimney. The structure is clad in brick and has modern windows and doors. The residence has a covered partial
 porch and a single-car garage.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	23 of 75
A	
Title	

Municipal Address: 3483 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached double-car garage. The view of the residence is obstructed by vegetation.

The residence is a two storey structure with a low-pitched side gable roof. The front (north) elevation has a shed dormer. The structure is clad in vinyl siding and brick and
 has modern windows and doors. The front elevation has a partial porch clad in brick with a metal railing. The structure has an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	24 of 75
A	
Title	

Municipal Address: 3567 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1961-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached garage.

The residence is s a one storey structure with a mediumpitched hip roof with asphalt shingles and a chimney. The structure is clad in vinyl siding and has modern windows
 and doors. The residence has a covered partial concrete porch and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	25 of 75
A	
Title	

Municipal Address: 3605 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached double-car garage.

The residence is s a one storey structure with a lowpitched hip roof with asphalt shingles. The structure is clad in brick and has modern windows and doors. The
 structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	26 of 75
A	
Title	

Municipal Address: 3635 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1961-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached garage.

The residence is a one and a half storey structure with a low-pitched side gable roof with asphalt shingles and a
 brick chimney. The structure is clad in vinyl siding and has modern windows and doors. The front (north) elevation has a central projecting bay, and a covered partial porch. The side (west) elevation has a projecting entrance.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	27 of 75
A	
Title	

Municipal Address: 3665 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a lowpitched side gable roof with asphalt shingles. The structure is clad in brick and has modern windows and doors. The residence has an attached double-car
 garage. The structure has an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	28 of 75
A	
Title	

Municipal Address: 3685 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a lowpitched front facing gable roof with asphalt shingles. The structure is clad in vinyl siding and has modern windows
 and doors. The residence has a double-car garage.

Indicators of Cultural Heritage Value or Interest from O.
Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	29 of 75
A	
Title	

Municipal Address: 3745 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached double-car garage.

The residence is s a one storey structure with a lowpitched side gable roof with asphalt shingles and a
 concrete chimney. The structure is clad in vinyl siding and has modern windows and doors. The residence has a partial concrete porch and an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	30 of 75
A	
Title	

Municipal Address: 3765 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a lowpitched side gable roof with asphalt shingles. The structure is clad in vinyl siding and has modern windows and doors. The front (north) elevation has a covered
 partial wood porch. The structure has an attached singlecar garage and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
H. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	31 of 75
A	
Title	

Municipal Address: 3825 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a mediumpitched cross gable roof with asphalt shingles. The structure is clad in brick and stone and has modern windows and doors. The front (north) elevation has a
 modern addition that has a covered partial concrete entry porch. The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	32 of 75
A	
Title	

Municipal Address: 3915 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached single-car garage.

The residence is s a one storey structure with a mediumpitched cross gable roof with asphalt shingles. The structure is clad in brick and aluminum siding and has modern windows and doors. The residence has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	33 of 75
A	
Title	

Municipal Address: 3965 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a mediumpitched side gable roof with asphalt shingles and a brick chimney. The structure is clad in brick and has modern
 windows and doors. The residence has a partial concrete porch and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	34 of 75
A	
Title	

Municipal Address: 3985 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached double-car garage.

The residence is s a one and a half storey structure with a medium-pitched side gable roof with asphalt shingles
 and two concrete chimneys. The front (north) elevation has a central gabled dormer. The structure is clad in brick and has modern windows and doors. The front elevation has a covered full width concrete porch clad in brick. The residence has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Appendix Page

A

Municipal Address: 4085 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a mediumpitched side gable roof with asphalt shingles and a brick chimney. The structure is clad in vinyl siding and has modern windows and doors. The front (north) elevation has a partial wood porch and a front facing gable. The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	36 of 75
A	
Title	

Municipal Address: 4095 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a mediumpitched side gable roof with asphalt shingles. The structure is clad in vinyl siding and has modern windows and doors. The residence has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	37 of 75
A	
Title	

Municipal Address: 4145 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached single-car garage.

The residence is s a one storey structure with a mediumpitched hip roof with asphalt shingles and a brick chimney. The structure is clad in brick and has modern
 windows and doors. The residence has a partial porch and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	38 of 75
A	
Title	

Municipal Address: 4175 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one and a half storey structure with a medium-pitched side gable roof with asphalt shingles and a brick chimney. The front (north) elevation has two gabled dormers. The structure is clad in brick and has
 modern windows and doors. The front entrance has projecting entrance with an asymmetrical gable. The residence has an attached single-car garage, and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	39 of 75
A	
Title	

Municipal Address: 4245 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is s a one storey structure with a lowpitched cross gable roof with asphalt shingles. The structure is clad in vinyl siding and has modern windows and doors. The residence has a partial wood porch and a
 concrete foundation

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	40 of 75
A	
Title	

Municipal Address: 4367 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Cemetery
Associated Dates: 1900
Relationship to Project: Within the Study Area
Description: The property contains Fairbairn Union
Cemetery.
The cemetery was established in 1900. Thomas Fairbairn donated one acre of land from his farm for a cemetery, prior to his death on May 24, 1900. Thomas Fairbairn was
 the first burial in the cemetery.

The cemetery contains a mixture of grave markers from the early $20^{\text {th }}$ century to the $21^{\text {st }}$ century. The entrance to the cemetery is marked with brick piers with metal gates.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: The Fairbairn Cemetery established in 1900, has a direct association with a person in the community, Thomas Fairbairn, who donated the property for a public burying ground in 1900. Fairbairn was the first person laid to rest within the cemetery. The Fairbairn Cemetery supports the early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Cemetery: Grave markers and brick piers with metal gates.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-5
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	41 of 75
A	
Title	

Municipal Address: 4489 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached double-car garage.

The residence is s a one storey structure with a lowpitched hip roof with asphalt shingles and a brick
 chimney. The structure is clad in brick and has modern windows and doors. The residence has a partial concrete and porch and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	42 of 75
A	
Title	

Municipal Address: 4441 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached single-car garage.

The residence is s a one storey structure with a lowpitched hip roof with asphalt shingles and a brick chimney. The structure is clad in brick and has modern
 windows and doors. The residence has a partial wood porch and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		
2. The property has historical value or associative value because it,		
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,	\checkmark	
i. Is important in defining, maintaining or supporting the character of an		
irea,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	43 of 75
A	
Title	

Municipal Address: 4475 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached double-car garage.
The residence is s a one storey structure with a lowpitched hip roof with asphalt shingles and a brick chimney. The structure is clad in brick and has modern
 windows and doors. The residence has a partial concrete porch and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	44 of 75
A	
Title	

Municipal Address: $44358^{\text {th }}$ Concession Road

Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached single-car garage.

The residence is a one storey structure with a low-pitched side gable roof with asphalt shingles and a brick chimney.
 The structure is clad in vinyl siding and has modern windows and doors. The residence has a partial concrete porch and a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	45 of 75
A	
Title	

Municipal Address: $44408^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1920-1940
Relationship to Project: Within the Study Area
Description: The property contains a residence and modern outbuilding.

The residence is a one storey structure with a low-pitched side gable roof with asphalt shingles and a concrete chimney. The structure is clad in vinyl siding and has
 modern windows and doors. The residence has a partial concrete porch and an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	46 of 75
A	
Title	

Municipal Address: 5680 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Farmstead
Associated Dates: circa 1875 (date from Municipal Heritage Register)
Relationship to Project: Within the Study Area
Description: The property contains two residences, several farm associated outbuildings, and four silos. The property contains mature maple trees.

The circa 1875 residence is a one and a half storey structure with a medium-pitched cross gable roof with asphalt shingles and a brick chimney. The structure has a T-shaped plan, with a covered wraparound verandah. The exterior is clad in vinyl siding and has modern windows and doors. The foundation was not visible from the roadway.

The second residence, that dates between 1962 and 1975, is a one storey structure with a medium-pitched side gable roof with asphalt shingles. The exterior is clad in vinyl siding and has modern windows and doors. The residence has partial wood entrance porch, an entrance gable, and a concrete foundation.
The property contains a timber frame barn that has a side gable roof that is clad with metal. The barn has a salt box side and is clad in metal. The south addition has a wood paneled door. The exterior has wood multi-pane windows. Adjacent to the barn is a mixture of late $19^{\text {th }}$ to modern outbuildings including:

A one storey driveshed, with a side gable roof that is clad in metal. Its exterior is clad in metal and has 2/2 wood fixed windows.

A one storey outbuilding with a side gable roof, that is clad in metal and has a concrete chimney. It has a horizontal wood siding exterior, with $2 / 2$ wood fixed windows.

An early $20^{\text {th }}$ century barn, with a side gable roof that is clad in metal. The exterior of the barn is clad in metal and has a rusticated concrete block foundation.

The property is listed on the City of Windsor Municipal Heritage Register and is associated with the Ure family.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. \quadIs a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.	\checkmark	
2. The property has historical value or associative value because it,	\checkmark	
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	47 of 75
A	
Title	

3. The property has contextual value because it,		
Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.ls a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: The construction of this one and a half storey residence dates to about 1875. It is a representative example of a vernacular Ontario farmhouse. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich through its connection to the Ure family. This property supports the late $19^{\text {th }}$ century agricultural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: One and a half storey structure, medium-pitched cross gable roof, brick chimney, and T-shaped plan. Barn: Timber frame structure, side gable roof, salt box side, wood paneled door, and wood multi-paned windows. Driveshed: one storey structure, side gable roof, and wood 2/2 fixed windows. Smaller barn: side gable roof and rusticated concrete foundation. Outbuilding: horizontal wood siding, side gable roof, and wood $2 / 2$ fixed windows.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-6
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	48 of 75
A	
Title	

Municipal Address: 7295 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1882-1912
Relationship to Project: Within the Study Area
Description: The property contains a residence and modern outbuildings. The property is bordered in wood fencing.

The residence is a one and a half storey structure with a medium-pitched cross gable roof with asphalt shingles.
 The roofline has two gabled dormers. The residence has a T-shaped plan. The exterior is clad in vinyl siding and has modern windows and doors. The north elevation has a covered partial wood porch. The structure has a rusticated concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.Is a landmark.		

Draft Statement of Cultural Heritage Value or Interest: The construction of this one and a half storey residence dates to between approximately 1882 and 1912, based on historic and topographic mapping. It is a representative example of a vernacular Ontario farmhouse. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the late $19^{\text {th }}$ to early $20^{\text {th }}$ century agricultural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: One and a half storey structure, medium-pitched cross gable roof, gabled dormers, and T-shaped plan.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-7
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	49 of 75
A	
Title	

Municipal Address: 4310 County Road 17

Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Outbuilding
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a modern house, barn, and outbuilding. The property is bordered by wood fencing.

The barn is a timber frame structure with a gambrel roof that is clad in metal and has hay hoods and two
 ventilators. The outbuilding is a timber frame structure with a side gable roof that is clad in metal.
Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	50 of 75
A	
itle	

Municipal Address: 8360 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached single-car garage.

The residence is s a one storey structure with a mediumpitched side gable roof with asphalt shingles and a brick
 chimney. The structure is clad in vinyl siding and has $1 / 1$ metal windows. The front (south) elevation has projecting entry porch with an asymmetrical gable. The residence has a partial concrete porch and a concrete foundation. The structure has a rear addition with an attached single-car garage.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	51 of 75
A	
Title	

Municipal Address: 8780 Baseline Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached garage. The view of the residence is obstructed from the roadway by vegetation.

The residence is s a one storey structure with a lowpitched side gable roof with asphalt shingles. The
 structure is clad in vinyl siding and has modern windows and doors. The residence has an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	52 of 75
A	
Title	

Municipal Address: 3850 County Road 17
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1882-1912
Relationship to Project: Within the Study Area
Description: The property contains a residence and modern outbuildings. The property has mature spruce trees.

The residence is s a one and a half storey structure with a medium-pitch side gable roof with asphalt shingles. The
 structure is clad in vinyl siding and has modern windows and doors. The front (west) three-bay façade has a covered partial wood porch. The residence has a south entry porch addition and a stone foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
H. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: The construction of this one and a half storey residence dates to between approximately 1882 and 1912, based on historic and topographic mapping. It is a representative example of a vernacular Ontario farmhouse. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the late $19^{\text {th }}$ to the early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: One and a half storey structure, medium-pitched side gable roof, three-bay front façade, and stone foundation. Landscape: mature spruce trees.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-8
Completed by (name): Laura Walter	Date Completed: May 7, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	53 of 75
A Title	
CULTURAL HERITAGE RESOURCE/LANDSCAPE RECORD FORM	

Municipal Address: $47218^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is a one and a half storey structure with a medium-pitched side gable roof and concrete chimney. The front (east) elevation has a shed dormer. The structure is clad in vinyl siding and has modern windows
 and doors. The front elevation has a full width concrete porch with metal railings. The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	54 of 75
A	
Title	

Municipal Address: $47278^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached double-car garage.

The residence is a one storey structure with a mediumpitched hip rook with brick chimney. The structure is clad in brick and has modern windows and doors. The front
 (east) elevation has a partial concrete porch. The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	55 of 75
A	
Title	

Municipal Address: $47748^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached garage.

The residence is a one storey structure with a mediumpitched side gable roof with asphalt shingles and a brick chimney. The structure is clad in brick and stone and has
 modern windows and doors. The front (west) elevation has a partial concrete porch with metal railings. The structure has a concrete foundation and an attached single-car garage.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	56 of 75
A	
Title	

Municipal Address: $48248^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Outbuildings
Associated Dates: 1920-1961
Relationship to Project: Within the Study Area
Description: The property contains three outbuildings and a cast-in-place concrete silo.

The largest outbuilding has a side gable roof and is clad
 in metal. Attached to the outbuilding is the concrete silo. Adjacent to the outbuilding and silo, are two smaller outbuildings with side gable roofs. One has vertical wood boards, the other is clad in metal.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		
2. The property has historical value or associative value because it,		
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	57 of 75
A	
Title	

Municipal Address: $46399^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1912
Relationship to Project: Within the Study Area
Description: The property contains a laneway that leads to a residence and modern outbuildings.

The residence is a two and a half storey structure with a medium-pitched hip roof with asphalt shingles. The roofline has three gabled dormers. The structure has a red
 brick exterior. The majority of windows are modern except for some $4 / 1$ and $3 / 1$ windows on the lower storey. The residence has a covered wraparound brick, concrete, and wood verandah. The front (east) entrance has a wood paneled door. The structure has an undetermined foundation.
The residence is listed on the City of Windsor's Municipal Heritage Register. It is recognized as the John Hayes House.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: The construction of this two storey residence dates to 1912. It is a representative example of a vernacular Ontario farmhouse with Edwardian design influences. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: Two storey structure, medium-pitched hip roof, gabled dormers, red brick exterior, covered wraparound brick, concrete and wood porch, 3/1 and $4 / 1$ windows, and wood paneled door.

Identification of CHVI: Yes
Cultural Heritage Resource Number: CHR-9
Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	58 of 75
A	
Title	

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	59 of 75
A	
Title	

Municipal Address: $44659^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1962
Relationship to Project: Within the Study Area
Description: The property contains a residence and modern outbuildings.

The residence is a one and a half storey structure with a medium-pitched front facing gable roof and a brick chimney. The north and south elevations have shed
 dormers. The exterior is clad in vinyl siding and stone and has modern windows and doors. The front (east) elevation has a covered full width concrete porch with metal railings. The foundation was undetermined.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	60 of 75
A	

Municipal Address: $44459^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1962
Relationship to Project: Within the Study Area
Description: The property contains a residence and a modern garage.

The residence is a one storey structure with a cross gable roof that has asphalt shingles. The structure is clad in stone and vinyl siding and has modern windows and doors. The
 residence has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or		\checkmark
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,		\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	61 of 75
A	
Title	

Municipal Address: $49799^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1942-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence, two outbuildings and a concrete silo.

The residence is a one storey structure with a mediumpitched side gable roof with asphalt shingles and a brick chimney. The east elevation has a gabled dormer. The
 structure is clad in vinyl siding and has modern windows and doors. The residence has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	62 of 75
A	
Title	

Municipal Address: $50129^{\text {th }}$ Concession Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence, a modern garage, and modern outbuilding.

The residence is a one and a half storey structure with a medium-pitched side gable roof with asphalt shingles and a stucco clad chimney. The exterior is clad in stucco
 and has modern windows and doors. The front (south) elevation has a partial concrete porch. The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	63 of 75
A	
Title	

Municipal Address: 4610 County Road 17
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and a modern garage.

The residence is a one storey structure with a mediumpitched side gable roof. The structure is clad in vinyl siding and has modern windows and doors. The residence has a
 concrete foundation.

Indicators of Cultural Heritage Value or Interest from O.
Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii.Demonstrates a high degree of technical or scientific achievement.		
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i. Is important in defining, maintaining or supporting the character of an		
area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	64 of 75
A	
Title	

Municipal Address: 4601 County Road 17
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1932 (from the Municipal Heritage Register)
Relationship to Project: Within the Study Area
Description: The property contains a residence.
The residence is a one and a half storey structure with a medium-pitched side gable roof with metal shingles and a brick chimney. The front (east) elevation has a gabled
 dormer. The structure is clad in stone and has modern windows and doors. The three-bay front façade has a covered full width concrete porch that is clad in stone. The structure has a concrete foundation.
The property is listed on the City of Windsor's Municipal Heritage Register. The residence is recognized as the Dolphice St. Louis house.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
i. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,		\checkmark
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.Is a landmark.		\checkmark

Draft Statement of Cultural Heritage Value or Interest: The construction of this one and a half storey residence dates to 1932. It is a representative example of a vernacular Ontario farmhouse with Bungalow design influences. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: One and a half storey structure, medium-pitched side gable roof, stone clad exterior, three-bay front façade, and stone clad front porch.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-10
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	65 of 75
A	
Title	

Municipal Address: 4500 County Road 17
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961 (according to topographic mapping), appears to be early $20^{\text {th }}$ century
Relationship to Project: Within the Study Area
Description: The property contains a residence and two outbuildings.

The residence is a one and a half storey structure with a cross gable roof with asphalt shingles. The structure has a
 T-shaped plan. The exterior is clad in vinyl siding and has modern windows and doors. The front (west) elevation has an enclosed partial porch and a gabled dormer. The residence has an undetermined foundation.
Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: The construction of this one and a half storey residence dates to between approximately 1940 and 1961 according to topographic maps of the study area, but the design of the structure points to an early $20^{\text {th }}$ century date. It is a representative example of a vernacular Ontario farmhouse. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: One and a half storey structure, medium-pitched cross gable roof, T-shaped plan, and gabled dormer.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-11
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	66 of 75
A	
Title	

Municipal Address: 4521 County Road 17
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1882-1912
Relationship to Project: Within the Study Area
Description: The property contains a residence, modern outbuilding, and wood outbuilding. Between the residence and the roadway are two mature spruce trees.

The residence is a one and a half storey structure with a medium-pitched cross gable roof with asphalt shingles.
 The roofline has three gabled dormers. The structure is clad in vinyl siding and has modern windows and doors. The front (east) elevation has a partial wood porch. The residence has a rusticated concrete foundation.

At the rear of the property is a vertical wood outbuilding with a side gable roof that is clad with metal.
Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method	\checkmark	
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
H. Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	
iii.Is a landmark.		

Draft Statement of Cultural Heritage Value or Interest: The construction of this one and a half storey residence dates to between approximately 1882 and 1912, based on historic and topographic mapping. It is a representative example of a vernacular Ontario farmhouse. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the late $19^{\text {th }}$ to early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: One and a half storey structure, medium-pitched cross gable roof, and gabled dormers. Outbuilding: vertical wood boards and side gable roof.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-12
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	67 of 75
A	
Title	

Municipal Address: 5284 North Talbot Road
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Park
Associated Dates: 1962-1975
Relationship to Project: Within the Study Area
Description: The property contains a community park, the Weston Park. The park is approximately nine acres.

The park contains a playground, two baseball diamonds, basketball courts, two tennis courts, a parking area,
soccer field, and an outbuilding.

Indicators of Cultural Heritage Value or Interest from O.
Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		\checkmark
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	68 of 75
A	
Title	

Municipal Address: 5648 North Talbot Road
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence
Associated Dates: 1882-1913
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached garage. The property has mature maple trees.

The residence is a one and a half storey structure with a medium-pitched cross gable roof with asphalt shingles. The structure has a T-shaped plan, with a front (south) one
 storey addition. The residence is clad in vinyl siding and brick and has modern windows and doors. The structure has a concrete foundation.

The single-car garage to the rear of the residence is a one storey structure with a gable roof. Its exterior is clad in brick and vinyl siding.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method ii. Displays a high degree of craftsmanship or artistic merit, or iii. Demonstrates a high degree of technical or scientific achievement. 2. The property has historical value or associative value because it, i.Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community, ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community. 3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	\checkmark
ii. Is physically, functionally, visually or historically linked to its surroundings, or	\checkmark	\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: The construction of this one and a half storey residence dates to between approximately 1882 and 1913, based on historic and topographic mapping. It is a representative example of a vernacular Ontario farmhouse. This residence has the potential to yield information that contributes to an understanding of Township of Sandwich. This property supports the late $19^{\text {th }}$ to early $20^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Residence: One and a half storey structure, medium-pitched cross gable roof, and T-shaped plan.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-13
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	69 of 75
A	
Title	

Municipal Address: 5700 North Talbot Road
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and a detached garage.

The residence is a one storey structure with a mediumpitched side gable roof with asphalt shingles. The exterior is clad in vinyl siding and has modern windows and doors.
 The structure has a concrete foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		\checkmark
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	70 of 75
A	
Title	

Municipal Address: 5760 North Talbot Road
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and outbuilding.

The residence is a one and a half storey structure with a high-pitched side gable roof with asphalt shingles. The
 front (south) elevation has two gabled dormers. The residence is clad in brick and vinyl siding and has modern windows and doors. The structure has an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	71 of 75
A	
Title	

Municipal Address: 5790 North Talbot Road
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence and a garage.

The residence is a one storey structure with a low-pitched hip roof with asphalt shingles. The structure is clad in vinyl siding and has modern windows and doors. The residence
 has a concrete foundation.

The double-car garage to the rear of the residence is a one storey structure with a gable roof. Its exterior is clad in vinyl siding.
Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,	\checkmark	
i. Is important in defining, maintaining or supporting the character of an		
area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	72 of 75
A	
Title	

Municipal Address: $9^{\text {th }}$ Concession Road (former railway line)
Former Township: Township of Sandwich
Municipality: Town of Tecumseh
Resource Type: Trail
Associated Dates: 1890
Relationship to Project: Within the Study Area
Description: The property contains the former railway corridor of the Michigan Central (M.C.) Railway. The rail line has been removed and is now a gravel path that is bordered by wood lots.

The railway line was between London and Windsor in 1890. The railway line was owned by M.C. until 1985, when it was taken over by the Canadian National Railway/Canadian Pacific Railway.
Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i. Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,	\checkmark	
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,	\checkmark	
i.Is important in defining, maintaining or supporting the character of an area, ii. Is physically, functionally, visually or historically linked to its surroundings, or iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: This former railway corridor is associated with the M.C. line that operated across southwestern Ontario and connected to the United States. The line was completed through the Township of Sandwich in 1890 . The line was removed in the late $20^{\text {th }}$ century. This former railway corridor supports the $19^{\text {th }}$ century rural character of the area and is physically and historically linked to its surroundings.

Identified Heritage Attributes: Recreational Trail: Layout of the former Canada Southern Railway Line including linear corridor lined with naturalized vegetation.

Identification of CHVI: Yes	Cultural Heritage Resource Number: CHR-14
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	73 of 75
A	
Title	

Municipal Address: 3940 Highway 3
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence, outbuildings, and a horse track. The front (south) yard has wood fencing.

The residence is a one and a half storey structure with a medium-pitched cross gable roof with asphalt shingles
 and a brick chimney. The front (south) elevation has a projecting one storey section with a gable roof. The structure is clad in vinyl siding and has modern windows and doors.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.		\checkmark
3. The property has contextual value because it,		
i.Is important in defining, maintaining or supporting the character of an area,	\checkmark	
ii. Is physically, functionally, visually or historically linked to its surroundings, or		\checkmark
iii.Is a landmark.	\checkmark	

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	74 of 75
A	
Title	

Municipal Address: 5075 North Talbot Road
Former Township: Township of Sandwich
Municipality: City of Windsor
Resource Type: Residence
Associated Dates: 1940-1961
Relationship to Project: Within the Study Area
Description: The property contains a residence, and two outbuildings. The view of the residence is obstructed by vegetation.

The residence is a one storey structure with a mediumpitched cross gable roof with asphalt shingles and a concrete chimney. The exterior is clad in vinyl and a mixture of $3 / 1$ wood windows and modern windows. The structure has an undetermined foundation.

Indicators of Cultural Heritage Value or Interest from O. Reg. 9/06:

1. The property has design value or physical value because it,	Yes	No
i.Is a rare, unique, representative or early example of a style, type, expression, material or construction method		\checkmark
ii. Displays a high degree of craftsmanship or artistic merit, or		\checkmark
iii. Demonstrates a high degree of technical or scientific achievement.		\checkmark
2. The property has historical value or associative value because it,		\checkmark
Has direct associations with a theme, event, belief, person, activity organization or institution that is significant to a community,	\checkmark	
ii. Yields, or has the potential to yield, information that contributes to an understanding of a community of culture, or	\checkmark	
iii. Demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.	\checkmark	
3. The property has contextual value because it,		
i. Is important in defining, maintaining or supporting the character of an		
i. area,		

Draft Statement of Cultural Heritage Value or Interest: None identified.
Identified Heritage Attributes: None identified.

Identification of CHVI: No	Cultural Heritage Resource Number: N/A
Completed by (name): Laura Walter	Date Completed: May 14, 2018.

Stantec

Client/Project	May 2018
Upper Little River Watershed	160311265
Environmental Assessment	Page
Appendix	75 of 75
A	
Title	

APPENDIX B
Conceptual Project Drawings

Client/Projec

Client/Project
ESSEX REGION CONSERVATION AUTHORITY PPPER LITTLE RIVER
ENVIROMENTAL ASSESSMENT
Figure No.
18 STORMWATER MANAGEMENT POND CONCEPT 1

original sheer - Ansib
Stantec
aterloo ON N2LOA4
Waterloo, ON, N2L OA
wiw.stantec.com

ESSEX REGIONAL CONSERVATION AUTHORIT UPPER LTTLE RIVER
ENVIROMENIAL ASSESSMENT
igure No.
21
TYPICAL CROSS SECTION WITH ONE SWM FACILITY

origival sheel - ansi b

Hagey Blva. Suite 100
Waterloo, 5 N, N2LO
wiw.stantec.com

1:500
1:100V
1:100V

ESSEX REGIONAL CONSERVATION AUTHORTIY UPPER LITLE RIVER
ENVIROMENTAL ASSESSMENT
${ }^{\text {Figure No. }} 22$
22
CROSS SECTION WITH ONE SWM FACILITY AND CONTINGENCY

[^0]: ${ }^{1}$ In no way will the ministry be liable for any harm, damages, costs, expenses, losses, claims or actions that may result: (a) if the Report(s) or its recommendations are discovered to be inaccurate, incomplete, misleading or fraudulent; or (b) from the issuance of this letter. Further measures may need to be taken in the event that additional artifacts or archaeological sites are identified or the Report(s) is otherwise found to be inaccurate, incomplete, misleading or fraudulent.

[^1]: Please consider the environment before printing this email
 This e-mail transmission is confidential and may contain proprietary information for the express use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify us by telephone at the number above and arrange to return this transmission to us or destroy it.

